関数 $y = f(x) = \sin 3x$ が与えられています。この関数について、具体的に何を求めるべきか指示がありません。ここでは、関数の周期を求めることにします。

解析学三角関数周期正弦関数
2025/4/11

1. 問題の内容

関数 y=f(x)=sin3xy = f(x) = \sin 3x が与えられています。この関数について、具体的に何を求めるべきか指示がありません。ここでは、関数の周期を求めることにします。

2. 解き方の手順

正弦関数 y=sinxy = \sin x の周期は 2π2\pi です。関数 y=sin(kx)y = \sin(kx) の周期は 2πk\frac{2\pi}{|k|} となります。
この問題では、k=3k=3 であるため、周期は 2π3\frac{2\pi}{|3|} となります。
周期を計算します。
周期 =2π3= \frac{2\pi}{3}

3. 最終的な答え

周期: 2π3\frac{2\pi}{3}

「解析学」の関連問題

$\int \log_e(5+x) \, dx$ を計算します。

積分部分積分対数関数
2025/5/31

与えられた積分 $\int \frac{\tan x}{\cos x} dx$ を、$t = \cos x$ という変数変換を用いて計算する。

積分変数変換三角関数不定積分
2025/5/31

与えられた3つの関数について、漸近線を極限の計算を用いて求める問題です。 (1) $y = 3^{x-2} - 1$ (2) $y = \frac{2x+1}{x-2}$ (3) $y = \frac...

漸近線極限指数関数分数関数
2025/5/31

与えられた積分 $\int (2x+1)(x^2+x-5) dx$ を、$t = x^2 + x - 5$ と置換して計算します。

積分置換積分不定積分
2025/5/31

与えられた3つの極限を計算する問題です。 (1) $\lim_{x\to\infty} \frac{2-3x^2}{x^2+2x}$ (2) $\lim_{x\to\infty} \frac{x^2-...

極限関数の極限数列の極限不定形
2025/5/31

与えられた積分 $\int x\sqrt{x^2 + 4} \, dx$ を、$t = x^2 + 4$ という変数変換を用いて解きます。

積分変数変換不定積分
2025/5/31

$\log |\csc x|$ の微分を計算します。

微分三角関数対数関数合成関数の微分csc xcot x
2025/5/31

次の3つの極限値を求める問題です。 (1) $\lim_{x \to -1} (x-1)(x+2)(x-3)$ (2) $\lim_{x \to 3} \frac{x^2-3}{x-2}$ (3) $...

極限多項式関数代入法
2025/5/31

以下の三角関数の値を計算し、空欄を埋める。また、sinをcosに、cosをsinに変換する。 * $\sin(\frac{7}{4}\pi)$ * $\tan(-\frac{11}{4}\pi...

三角関数三角関数の値三角関数の変換加法定理
2025/5/31

次の定積分を計算します。 $\int_{-2}^{2\sqrt{2}} \frac{dx}{\sqrt{16-x^2}}$

定積分逆三角関数置換積分
2025/5/31