与えられた関数について、$\frac{dy}{dx}$ を求めます。 (1) $x = 2y^2 + 3\sqrt{y}$ (2) $\tan x + \frac{\log y}{3\sqrt{y}} = 5$解析学微分陰関数微分導関数2025/4/121. 問題の内容与えられた関数について、dydx\frac{dy}{dx}dxdy を求めます。(1) x=2y2+3yx = 2y^2 + 3\sqrt{y}x=2y2+3y(2) tanx+logy3y=5\tan x + \frac{\log y}{3\sqrt{y}} = 5tanx+3ylogy=52. 解き方の手順(1) x=2y2+3yx = 2y^2 + 3\sqrt{y}x=2y2+3y を xxx で微分します。dxdx=ddx(2y2)+ddx(3y)\frac{dx}{dx} = \frac{d}{dx} (2y^2) + \frac{d}{dx} (3\sqrt{y})dxdx=dxd(2y2)+dxd(3y)1=4ydydx+32ydydx1 = 4y \frac{dy}{dx} + \frac{3}{2\sqrt{y}} \frac{dy}{dx}1=4ydxdy+2y3dxdydydx\frac{dy}{dx}dxdy について解きます。1=(4y+32y)dydx1 = (4y + \frac{3}{2\sqrt{y}}) \frac{dy}{dx}1=(4y+2y3)dxdydydx=14y+32y\frac{dy}{dx} = \frac{1}{4y + \frac{3}{2\sqrt{y}}}dxdy=4y+2y31(2) tanx+logy3y=5\tan x + \frac{\log y}{3\sqrt{y}} = 5tanx+3ylogy=5 を xxx で微分します。ddx(tanx)+ddx(logy3y)=ddx(5)\frac{d}{dx} (\tan x) + \frac{d}{dx} (\frac{\log y}{3\sqrt{y}}) = \frac{d}{dx} (5)dxd(tanx)+dxd(3ylogy)=dxd(5)1cos2x+131ydydxy−logy⋅12ydydxy=0\frac{1}{\cos^2 x} + \frac{1}{3} \frac{\frac{1}{y} \frac{dy}{dx} \sqrt{y} - \log y \cdot \frac{1}{2\sqrt{y}} \frac{dy}{dx}}{y} = 0cos2x1+31yy1dxdyy−logy⋅2y1dxdy=01cos2x+131ydydx−logy2ydydxy=0\frac{1}{\cos^2 x} + \frac{1}{3} \frac{\frac{1}{\sqrt{y}} \frac{dy}{dx} - \frac{\log y}{2\sqrt{y}} \frac{dy}{dx}}{y} = 0cos2x1+31yy1dxdy−2ylogydxdy=01cos2x+13dydx(2−logy)2yy=0\frac{1}{\cos^2 x} + \frac{1}{3} \frac{\frac{dy}{dx} (2 - \log y)}{2y\sqrt{y}} = 0cos2x1+312yydxdy(2−logy)=01cos2x+dydx(2−logy)6y32=0\frac{1}{\cos^2 x} + \frac{dy}{dx} \frac{(2 - \log y)}{6y^{\frac{3}{2}}} = 0cos2x1+dxdy6y23(2−logy)=0dydx(2−logy)6y32=−1cos2x\frac{dy}{dx} \frac{(2 - \log y)}{6y^{\frac{3}{2}}} = -\frac{1}{\cos^2 x}dxdy6y23(2−logy)=−cos2x1dydx=−6y32cos2x(2−logy)\frac{dy}{dx} = -\frac{6y^{\frac{3}{2}}}{\cos^2 x (2 - \log y)}dxdy=−cos2x(2−logy)6y233. 最終的な答え(1) dydx=14y+32y\frac{dy}{dx} = \frac{1}{4y + \frac{3}{2\sqrt{y}}}dxdy=4y+2y31(2) dydx=−6y32cos2x(2−logy)\frac{dy}{dx} = -\frac{6y^{\frac{3}{2}}}{\cos^2 x (2 - \log y)}dxdy=−cos2x(2−logy)6y23