与えられた数式 $(a+b)^2(a^2-ab+b^2)^2$ を展開せよ。代数学展開因数分解多項式2025/4/121. 問題の内容与えられた数式 (a+b)2(a2−ab+b2)2(a+b)^2(a^2-ab+b^2)^2(a+b)2(a2−ab+b2)2 を展開せよ。2. 解き方の手順まず、(a+b)2(a+b)^2(a+b)2 と (a2−ab+b2)2(a^2-ab+b^2)^2(a2−ab+b2)2 をそれぞれ展開します。(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2(a2−ab+b2)2=(a2−ab+b2)(a2−ab+b2)=a4−a3b+a2b2−a3b+a2b2−ab3+a2b2−ab3+b4=a4−2a3b+3a2b2−2ab3+b4(a^2-ab+b^2)^2 = (a^2-ab+b^2)(a^2-ab+b^2) = a^4 - a^3b + a^2b^2 - a^3b + a^2b^2 - ab^3 + a^2b^2 - ab^3 + b^4 = a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4(a2−ab+b2)2=(a2−ab+b2)(a2−ab+b2)=a4−a3b+a2b2−a3b+a2b2−ab3+a2b2−ab3+b4=a4−2a3b+3a2b2−2ab3+b4次に、(a2+2ab+b2)(a4−2a3b+3a2b2−2ab3+b4)(a^2 + 2ab + b^2)(a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4)(a2+2ab+b2)(a4−2a3b+3a2b2−2ab3+b4) を展開します。a2(a4−2a3b+3a2b2−2ab3+b4)=a6−2a5b+3a4b2−2a3b3+a2b4a^2(a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4) = a^6 - 2a^5b + 3a^4b^2 - 2a^3b^3 + a^2b^4a2(a4−2a3b+3a2b2−2ab3+b4)=a6−2a5b+3a4b2−2a3b3+a2b42ab(a4−2a3b+3a2b2−2ab3+b4)=2a5b−4a4b2+6a3b3−4a2b4+2ab52ab(a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4) = 2a^5b - 4a^4b^2 + 6a^3b^3 - 4a^2b^4 + 2ab^52ab(a4−2a3b+3a2b2−2ab3+b4)=2a5b−4a4b2+6a3b3−4a2b4+2ab5b2(a4−2a3b+3a2b2−2ab3+b4)=a4b2−2a3b3+3a2b4−2ab5+b6b^2(a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4) = a^4b^2 - 2a^3b^3 + 3a^2b^4 - 2ab^5 + b^6b2(a4−2a3b+3a2b2−2ab3+b4)=a4b2−2a3b3+3a2b4−2ab5+b6上記の3つの式を足し合わせると、a6−2a5b+3a4b2−2a3b3+a2b4+2a5b−4a4b2+6a3b3−4a2b4+2ab5+a4b2−2a3b3+3a2b4−2ab5+b6=a6+2a3b3+b6a^6 - 2a^5b + 3a^4b^2 - 2a^3b^3 + a^2b^4 + 2a^5b - 4a^4b^2 + 6a^3b^3 - 4a^2b^4 + 2ab^5 + a^4b^2 - 2a^3b^3 + 3a^2b^4 - 2ab^5 + b^6 = a^6 + 2a^3b^3 + b^6a6−2a5b+3a4b2−2a3b3+a2b4+2a5b−4a4b2+6a3b3−4a2b4+2ab5+a4b2−2a3b3+3a2b4−2ab5+b6=a6+2a3b3+b6よって、(a2+2ab+b2)(a4−2a3b+3a2b2−2ab3+b4)=a6+2a3b3+b6(a^2 + 2ab + b^2)(a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4) = a^6 + 2a^3b^3 + b^6(a2+2ab+b2)(a4−2a3b+3a2b2−2ab3+b4)=a6+2a3b3+b6ここで、a6+2a3b3+b6=(a3)2+2(a3)(b3)+(b3)2=(a3+b3)2a^6 + 2a^3b^3 + b^6 = (a^3)^2 + 2(a^3)(b^3) + (b^3)^2 = (a^3 + b^3)^2a6+2a3b3+b6=(a3)2+2(a3)(b3)+(b3)2=(a3+b3)2また、a3+b3=(a+b)(a2−ab+b2)a^3+b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2) であるので、(a3+b3)2=[(a+b)(a2−ab+b2)]2=(a+b)2(a2−ab+b2)2(a^3 + b^3)^2 = [(a+b)(a^2-ab+b^2)]^2 = (a+b)^2(a^2-ab+b^2)^2(a3+b3)2=[(a+b)(a2−ab+b2)]2=(a+b)2(a2−ab+b2)2a6+2a3b3+b6=(a2)3+(b2)3=(a3+b3)2a^6+2a^3b^3+b^6=(a^2)^3 + (b^2)^3 = (a^3+b^3)^2a6+2a3b3+b6=(a2)3+(b2)3=(a3+b3)2.さらに、a3+b3=(a+b)(a2−ab+b2)a^3+b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2). よって、(a3+b3)2=(a+b)2(a2−ab+b2)2(a^3+b^3)^2 = (a+b)^2(a^2-ab+b^2)^2(a3+b3)2=(a+b)2(a2−ab+b2)2。a3+b3=(a+b)(a2−ab+b2)a^3+b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)したがって、(a+b)(a+b)(a2−ab+b2)(a2−ab+b2)=((a+b)(a2−ab+b2))2=(a3+b3)2=a6+2a3b3+b6 (a+b)(a+b)(a^2-ab+b^2)(a^2-ab+b^2) = ((a+b)(a^2-ab+b^2))^2 = (a^3+b^3)^2=a^6+2a^3b^3+b^6 (a+b)(a+b)(a2−ab+b2)(a2−ab+b2)=((a+b)(a2−ab+b2))2=(a3+b3)2=a6+2a3b3+b63. 最終的な答えa6+2a3b3+b6a^6 + 2a^3b^3 + b^6a6+2a3b3+b6