The problem asks to evaluate the definite integral $K = \int_{0}^{\pi} x \sin x \, dx$.

AnalysisDefinite IntegralIntegration by PartsTrigonometric Functions
2025/3/14

1. Problem Description

The problem asks to evaluate the definite integral K=0πxsinxdxK = \int_{0}^{\pi} x \sin x \, dx.

2. Solution Steps

To evaluate the integral xsinxdx\int x \sin x \, dx, we use integration by parts. The formula for integration by parts is:
udv=uvvdu\int u \, dv = uv - \int v \, du
Let u=xu = x and dv=sinxdxdv = \sin x \, dx. Then du=dxdu = dx and v=sinxdx=cosxv = \int \sin x \, dx = -\cos x. Applying the integration by parts formula, we get:
xsinxdx=x(cosx)(cosx)dx=xcosx+cosxdx=xcosx+sinx+C\int x \sin x \, dx = x(-\cos x) - \int (-\cos x) \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + C
Now we can evaluate the definite integral:
0πxsinxdx=[xcosx+sinx]0π\int_{0}^{\pi} x \sin x \, dx = [-x \cos x + \sin x]_{0}^{\pi}
=(πcosπ+sinπ)(0cos0+sin0)= (-\pi \cos \pi + \sin \pi) - (-0 \cos 0 + \sin 0)
=(π(1)+0)(0+0)= (-\pi(-1) + 0) - (0 + 0)
=π= \pi

3. Final Answer

The final answer is π\pi.

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1