直角三角形において、底辺の長さを $x$ 、高さを $y$ 、底角を $\theta$ とするとき、$x$ と $y$ の関係を三角関数で表し、その式の取り得る最小値と最大値を求める。

幾何学直角三角形三角関数tan最大値最小値三角比
2025/4/15

1. 問題の内容

直角三角形において、底辺の長さを xx 、高さを yy 、底角を θ\theta とするとき、xxyy の関係を三角関数で表し、その式の取り得る最小値と最大値を求める。

2. 解き方の手順

三角形は直角三角形であるので、三角関数の定義より、
tanθ=yx\tan \theta = \frac{y}{x}
よって、yy は次のように表せる。
y=xtanθy = x \tan \theta
θ\theta の取り得る範囲は 0<θ<π20 < \theta < \frac{\pi}{2} である。
したがって、0<tanθ<0 < \tan \theta < \infty となる。
最小値は、θ\theta が0に近づくときに yy は0に近づくので、0となる。
最大値は、θ\thetaπ2\frac{\pi}{2} に近づくときに yy は無限大に発散するので、存在しない。

3. 最終的な答え

y=xtanθy = x \tan \theta
最小値:0
最大値:なし

「幾何学」の関連問題

扇形の弧の長さと面積を求める問題です。半径と中心角が与えられています。問題6と7それぞれに(1)と(2)があります。

扇形弧の長さ面積半径中心角
2025/6/17

与えられた2つの2次関数のグラフを描く問題です。 (1) $y = 3x^2$ (2) $y = -\frac{1}{3}x^2$

二次関数グラフグラフの描画放物線グラフの拡大・縮小グラフの反転
2025/6/17

$OA=6$, $OB=4$, $\angle AOB = 60^\circ$ である $\triangle OAB$ において、頂点 $A$ から辺 $OB$ に下ろした垂線を $AC$, 頂点 $...

ベクトル内積垂線三角形空間ベクトル
2025/6/17

$\triangle OAB$において、辺$OB$の中点を$M$、辺$AB$を$1:2$に内分する点を$C$、辺$OA$を$2:3$に内分する点を$D$とする。線分$CM$と線分$BD$の交点を$P$...

ベクトル内分点線分の交点
2025/6/17

$\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$ であることを用いて、$\tan{\frac{\pi}{12}}$ の値を求める問題です。

三角関数タンジェント加法定理角度変換有理化
2025/6/17

$\alpha$ の動径が第2象限にあり、$\sin \alpha = \frac{2}{3}$である。また、$\beta$ の動径が第1象限にあり、$\cos \beta = \frac{3}{5}...

三角関数加法定理三角比
2025/6/17

一辺の長さが2の正四面体ABCDがある。辺BCの中点をMとする。 (1) $\cos{\angle AMD}$の値を求めよ。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求めよ。...

空間図形正四面体余弦定理ヘロンの公式体積
2025/6/17

問題(8)と(9)は、2つの直線のなす角$\theta$を求める問題です。ただし、$0 \le \theta \le \frac{\pi}{2}$とします。 (8)は、$y=\frac{1}{2}x$...

直線角度傾き三角関数
2025/6/17

一辺の長さが2の正四面体ABCDがあり、辺BCの中点をMとする。 (1) $\cos{\angle AMD}$ の値を求める。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求める...

空間図形正四面体余弦定理線分の長さ三角形の面積垂線の長さ
2025/6/17

一辺の長さが2の正四面体ABCDがあり、辺BCの中点をMとする。 (1) $\cos{\angle AMD}$ の値を求める。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求める...

空間図形正四面体余弦定理面積体積ベクトル (暗黙的)
2025/6/17