We are asked to find all the solutions to the following trigonometric equations: (a) $cos(2\theta) = sin(\theta)$ (b) $2cos(6y) + 11cos(6y)sin(3y) = 0$ (c) $4sin^2(3t) - 3sin(3t) = 1$ Also we need to prove the identity for $tan(\alpha + \beta)$ and find an expression for $tan(2\alpha)$.

TrigonometryTrigonometric EquationsTrigonometric IdentitiesDouble Angle FormulaSum and Difference Formulas
2025/3/14

1. Problem Description

We are asked to find all the solutions to the following trigonometric equations:
(a) cos(2θ)=sin(θ)cos(2\theta) = sin(\theta)
(b) 2cos(6y)+11cos(6y)sin(3y)=02cos(6y) + 11cos(6y)sin(3y) = 0
(c) 4sin2(3t)3sin(3t)=14sin^2(3t) - 3sin(3t) = 1
Also we need to prove the identity for tan(α+β)tan(\alpha + \beta) and find an expression for tan(2α)tan(2\alpha).

2. Solution Steps

(a) cos(2θ)=sin(θ)cos(2\theta) = sin(\theta)
We know that cos(2θ)=12sin2(θ)cos(2\theta) = 1 - 2sin^2(\theta).
Substituting, we have 12sin2(θ)=sin(θ)1 - 2sin^2(\theta) = sin(\theta).
Rearranging, 2sin2(θ)+sin(θ)1=02sin^2(\theta) + sin(\theta) - 1 = 0.
Let x=sin(θ)x = sin(\theta). Then 2x2+x1=02x^2 + x - 1 = 0.
Factoring, (2x1)(x+1)=0(2x - 1)(x + 1) = 0.
So, x=12x = \frac{1}{2} or x=1x = -1.
If sin(θ)=12sin(\theta) = \frac{1}{2}, then θ=π6+2πk\theta = \frac{\pi}{6} + 2\pi k or θ=5π6+2πk\theta = \frac{5\pi}{6} + 2\pi k, where kk is an integer.
If sin(θ)=1sin(\theta) = -1, then θ=3π2+2πk\theta = \frac{3\pi}{2} + 2\pi k, where kk is an integer.
(b) 2cos(6y)+11cos(6y)sin(3y)=02cos(6y) + 11cos(6y)sin(3y) = 0
Factoring out cos(6y)cos(6y), we have cos(6y)(2+11sin(3y))=0cos(6y)(2 + 11sin(3y)) = 0.
So, either cos(6y)=0cos(6y) = 0 or 2+11sin(3y)=02 + 11sin(3y) = 0.
If cos(6y)=0cos(6y) = 0, then 6y=π2+πk6y = \frac{\pi}{2} + \pi k, where kk is an integer. Thus, y=π12+πk6y = \frac{\pi}{12} + \frac{\pi k}{6}.
If 2+11sin(3y)=02 + 11sin(3y) = 0, then sin(3y)=211sin(3y) = -\frac{2}{11}.
Thus, 3y=arcsin(211)+2πk3y = arcsin(-\frac{2}{11}) + 2\pi k or 3y=πarcsin(211)+2πk3y = \pi - arcsin(-\frac{2}{11}) + 2\pi k.
y=13arcsin(211)+2πk3y = \frac{1}{3}arcsin(-\frac{2}{11}) + \frac{2\pi k}{3} or y=π313arcsin(211)+2πk3y = \frac{\pi}{3} - \frac{1}{3}arcsin(-\frac{2}{11}) + \frac{2\pi k}{3}.
(c) 4sin2(3t)3sin(3t)=14sin^2(3t) - 3sin(3t) = 1
Rearranging, 4sin2(3t)3sin(3t)1=04sin^2(3t) - 3sin(3t) - 1 = 0.
Let x=sin(3t)x = sin(3t). Then 4x23x1=04x^2 - 3x - 1 = 0.
Factoring, (4x+1)(x1)=0(4x + 1)(x - 1) = 0.
So, x=14x = -\frac{1}{4} or x=1x = 1.
If sin(3t)=14sin(3t) = -\frac{1}{4}, then 3t=arcsin(14)+2πk3t = arcsin(-\frac{1}{4}) + 2\pi k or 3t=πarcsin(14)+2πk3t = \pi - arcsin(-\frac{1}{4}) + 2\pi k.
t=13arcsin(14)+2πk3t = \frac{1}{3}arcsin(-\frac{1}{4}) + \frac{2\pi k}{3} or t=π313arcsin(14)+2πk3t = \frac{\pi}{3} - \frac{1}{3}arcsin(-\frac{1}{4}) + \frac{2\pi k}{3}.
If sin(3t)=1sin(3t) = 1, then 3t=π2+2πk3t = \frac{\pi}{2} + 2\pi k. Thus, t=π6+2πk3t = \frac{\pi}{6} + \frac{2\pi k}{3}.
(d) tan(α+β)=sin(α+β)cos(α+β)=sinαcosβ+cosαsinβcosαcosβsinαsinβtan(\alpha + \beta) = \frac{sin(\alpha + \beta)}{cos(\alpha + \beta)} = \frac{sin\alpha cos\beta + cos\alpha sin\beta}{cos\alpha cos\beta - sin\alpha sin\beta}.
Dividing the numerator and denominator by cosαcosβcos\alpha cos\beta, we get:
tan(α+β)=sinαcosβcosαcosβ+cosαsinβcosαcosβcosαcosβcosαcosβsinαsinβcosαcosβ=tanα+tanβ1tanαtanβtan(\alpha + \beta) = \frac{\frac{sin\alpha cos\beta}{cos\alpha cos\beta} + \frac{cos\alpha sin\beta}{cos\alpha cos\beta}}{\frac{cos\alpha cos\beta}{cos\alpha cos\beta} - \frac{sin\alpha sin\beta}{cos\alpha cos\beta}} = \frac{tan\alpha + tan\beta}{1 - tan\alpha tan\beta}.
(e) tan(2α)=tan(α+α)tan(2\alpha) = tan(\alpha + \alpha).
Using the formula from part (d), we have tan(2α)=tanα+tanα1tanαtanα=2tanα1tan2αtan(2\alpha) = \frac{tan\alpha + tan\alpha}{1 - tan\alpha tan\alpha} = \frac{2tan\alpha}{1 - tan^2\alpha}.

3. Final Answer

(a) θ=π6+2πk\theta = \frac{\pi}{6} + 2\pi k, θ=5π6+2πk\theta = \frac{5\pi}{6} + 2\pi k, θ=3π2+2πk\theta = \frac{3\pi}{2} + 2\pi k
(b) y=π12+πk6y = \frac{\pi}{12} + \frac{\pi k}{6}, y=13arcsin(211)+2πk3y = \frac{1}{3}arcsin(-\frac{2}{11}) + \frac{2\pi k}{3}, y=π313arcsin(211)+2πk3y = \frac{\pi}{3} - \frac{1}{3}arcsin(-\frac{2}{11}) + \frac{2\pi k}{3}
(c) t=13arcsin(14)+2πk3t = \frac{1}{3}arcsin(-\frac{1}{4}) + \frac{2\pi k}{3}, t=π313arcsin(14)+2πk3t = \frac{\pi}{3} - \frac{1}{3}arcsin(-\frac{1}{4}) + \frac{2\pi k}{3}, t=π6+2πk3t = \frac{\pi}{6} + \frac{2\pi k}{3}
(d) tan(α+β)=tanα+tanβ1tanαtanβtan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha tan\beta}
(e) tan(2α)=2tanα1tan2αtan(2\alpha) = \frac{2tan\alpha}{1 - tan^2\alpha}

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19