与えられた二次方程式を解く問題と、不等式に関する問題です。代数学二次方程式不等式因数分解解の公式2025/4/171. 問題の内容与えられた二次方程式を解く問題と、不等式に関する問題です。2. 解き方の手順(1) x2−2=2x^2 - 2 = 2x2−2=2 x2=4x^2 = 4x2=4 x=±2x = \pm 2x=±2(2) x2+5x+6=0x^2 + 5x + 6 = 0x2+5x+6=0 (x+2)(x+3)=0(x+2)(x+3) = 0(x+2)(x+3)=0 x=−2,−3x = -2, -3x=−2,−3(3) x2−x−12=0x^2 - x - 12 = 0x2−x−12=0 (x−4)(x+3)=0(x-4)(x+3) = 0(x−4)(x+3)=0 x=4,−3x = 4, -3x=4,−3(4) x2−8x+16=0x^2 - 8x + 16 = 0x2−8x+16=0 (x−4)2=0(x-4)^2 = 0(x−4)2=0 x=4x = 4x=4(5) 3x2−2x−1=03x^2 - 2x - 1 = 03x2−2x−1=0 (3x+1)(x−1)=0(3x+1)(x-1) = 0(3x+1)(x−1)=0 x=−13,1x = -\frac{1}{3}, 1x=−31,1(6) x2−3x−7=0x^2 - 3x - 7 = 0x2−3x−7=0 解の公式より、 x=−(−3)±(−3)2−4(1)(−7)2(1)x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-7)}}{2(1)}x=2(1)−(−3)±(−3)2−4(1)(−7) x=3±9+282x = \frac{3 \pm \sqrt{9 + 28}}{2}x=23±9+28 x=3±372x = \frac{3 \pm \sqrt{37}}{2}x=23±37(7) 2x2+2x−1=02x^2 + 2x - 1 = 02x2+2x−1=0 解の公式より、 x=−2±22−4(2)(−1)2(2)x = \frac{-2 \pm \sqrt{2^2 - 4(2)(-1)}}{2(2)}x=2(2)−2±22−4(2)(−1) x=−2±4+84x = \frac{-2 \pm \sqrt{4 + 8}}{4}x=4−2±4+8 x=−2±124x = \frac{-2 \pm \sqrt{12}}{4}x=4−2±12 x=−2±234x = \frac{-2 \pm 2\sqrt{3}}{4}x=4−2±23 x=−1±32x = \frac{-1 \pm \sqrt{3}}{2}x=2−1±3(5) 不等式(1) a+10>b+10a + 10 > b + 10a+10>b+10両辺から10を引くと、a>ba > ba>b(2) a−15<b−15a - 15 < b - 15a−15<b−15両辺に15を足すと、a<ba < ba<b3. 最終的な答え(1)x2=4x^2 = 4x2=4, x=±2x = \pm 2x=±2(2)(x+2)(x+3)=0(x+2)(x+3) = 0(x+2)(x+3)=0, x=−2,−3x = -2, -3x=−2,−3(3)(x−4)(x+3)=0(x-4)(x+3) = 0(x−4)(x+3)=0, x=4,−3x = 4, -3x=4,−3(4)(x−4)2=0(x-4)^2 = 0(x−4)2=0, x=4x = 4x=4(5)(3x+1)(x−1)=0(3x+1)(x-1) = 0(3x+1)(x−1)=0, x=−13,1x = -\frac{1}{3}, 1x=−31,1(6)x=3±372x = \frac{3 \pm \sqrt{37}}{2}x=23±37(7)x=−1±32x = \frac{-1 \pm \sqrt{3}}{2}x=2−1±3(5) 不等式(1) a>ba > ba>b(2) a<ba < ba<b