与えられた和 $S_n = \sum_{k=2}^{n} \frac{k^2 + 1}{k^2 - 1}$ を計算し、$n$ の分数式で表す問題です。解析学級数部分分数分解シグマ記号2025/4/171. 問題の内容与えられた和 Sn=∑k=2nk2+1k2−1S_n = \sum_{k=2}^{n} \frac{k^2 + 1}{k^2 - 1}Sn=∑k=2nk2−1k2+1 を計算し、nnn の分数式で表す問題です。2. 解き方の手順まず、k2+1k2−1\frac{k^2 + 1}{k^2 - 1}k2−1k2+1 を部分分数分解します。k2+1k2−1=k2−1+2k2−1=1+2k2−1=1+2(k−1)(k+1)\frac{k^2 + 1}{k^2 - 1} = \frac{k^2 - 1 + 2}{k^2 - 1} = 1 + \frac{2}{k^2 - 1} = 1 + \frac{2}{(k-1)(k+1)}k2−1k2+1=k2−1k2−1+2=1+k2−12=1+(k−1)(k+1)2次に、2(k−1)(k+1)\frac{2}{(k-1)(k+1)}(k−1)(k+1)2 を部分分数分解します。2(k−1)(k+1)=Ak−1+Bk+1\frac{2}{(k-1)(k+1)} = \frac{A}{k-1} + \frac{B}{k+1}(k−1)(k+1)2=k−1A+k+1B とおくと、2=A(k+1)+B(k−1)2 = A(k+1) + B(k-1)2=A(k+1)+B(k−1)k=1k = 1k=1 のとき 2=2A2 = 2A2=2A より A=1A = 1A=1k=−1k = -1k=−1 のとき 2=−2B2 = -2B2=−2B より B=−1B = -1B=−1したがって、2(k−1)(k+1)=1k−1−1k+1\frac{2}{(k-1)(k+1)} = \frac{1}{k-1} - \frac{1}{k+1}(k−1)(k+1)2=k−11−k+11よって、k2+1k2−1=1+1k−1−1k+1\frac{k^2 + 1}{k^2 - 1} = 1 + \frac{1}{k-1} - \frac{1}{k+1}k2−1k2+1=1+k−11−k+11Sn=∑k=2nk2+1k2−1=∑k=2n(1+1k−1−1k+1)=∑k=2n1+∑k=2n(1k−1−1k+1)S_n = \sum_{k=2}^{n} \frac{k^2 + 1}{k^2 - 1} = \sum_{k=2}^{n} (1 + \frac{1}{k-1} - \frac{1}{k+1}) = \sum_{k=2}^{n} 1 + \sum_{k=2}^{n} (\frac{1}{k-1} - \frac{1}{k+1})Sn=∑k=2nk2−1k2+1=∑k=2n(1+k−11−k+11)=∑k=2n1+∑k=2n(k−11−k+11)∑k=2n1=n−1\sum_{k=2}^{n} 1 = n - 1∑k=2n1=n−1∑k=2n(1k−1−1k+1)=(11−13)+(12−14)+(13−15)+⋯+(1n−3−1n−1)+(1n−2−1n)+(1n−1−1n+1)\sum_{k=2}^{n} (\frac{1}{k-1} - \frac{1}{k+1}) = (\frac{1}{1} - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + \cdots + (\frac{1}{n-3} - \frac{1}{n-1}) + (\frac{1}{n-2} - \frac{1}{n}) + (\frac{1}{n-1} - \frac{1}{n+1})∑k=2n(k−11−k+11)=(11−31)+(21−41)+(31−51)+⋯+(n−31−n−11)+(n−21−n1)+(n−11−n+11)=1+12−1n−1n+1=32−n+1+nn(n+1)=32−2n+1n(n+1)= 1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{n+1} = \frac{3}{2} - \frac{n+1+n}{n(n+1)} = \frac{3}{2} - \frac{2n+1}{n(n+1)}=1+21−n1−n+11=23−n(n+1)n+1+n=23−n(n+1)2n+1したがって、Sn=n−1+32−2n+1n(n+1)=n+12−2n+1n(n+1)=2n(n(n+1))+n(n+1)−2(2n+1)2n(n+1)=2n3+2n2+n2+n−4n−22n(n+1)=2n3+3n2−3n−22n(n+1)S_n = n - 1 + \frac{3}{2} - \frac{2n+1}{n(n+1)} = n + \frac{1}{2} - \frac{2n+1}{n(n+1)} = \frac{2n(n(n+1)) + n(n+1) - 2(2n+1)}{2n(n+1)} = \frac{2n^3 + 2n^2 + n^2 + n - 4n - 2}{2n(n+1)} = \frac{2n^3 + 3n^2 - 3n - 2}{2n(n+1)}Sn=n−1+23−n(n+1)2n+1=n+21−n(n+1)2n+1=2n(n+1)2n(n(n+1))+n(n+1)−2(2n+1)=2n(n+1)2n3+2n2+n2+n−4n−2=2n(n+1)2n3+3n2−3n−2さらに因数分解を行うと、2n3+3n2−3n−2=(n+2)(2n2−n−1)=(n+2)(2n+1)(n−1)2n^3 + 3n^2 - 3n - 2 = (n+2)(2n^2-n-1)=(n+2)(2n+1)(n-1)2n3+3n2−3n−2=(n+2)(2n2−n−1)=(n+2)(2n+1)(n−1)よってSn=(n+2)(2n+1)(n−1)2n(n+1)S_n = \frac{(n+2)(2n+1)(n-1)}{2n(n+1)}Sn=2n(n+1)(n+2)(2n+1)(n−1)3. 最終的な答えSn=(n+2)(2n+1)(n−1)2n(n+1)S_n = \frac{(n+2)(2n+1)(n-1)}{2n(n+1)}Sn=2n(n+1)(n+2)(2n+1)(n−1)