与えられた2つの式を展開する問題です。 (1) $(3x+2)(4x^2-3x-1)$ (2) $(3x^3-5x^2+1)(1-x+2x^2)$代数学多項式の展開代数2025/4/171. 問題の内容与えられた2つの式を展開する問題です。(1) (3x+2)(4x2−3x−1)(3x+2)(4x^2-3x-1)(3x+2)(4x2−3x−1)(2) (3x3−5x2+1)(1−x+2x2)(3x^3-5x^2+1)(1-x+2x^2)(3x3−5x2+1)(1−x+2x2)2. 解き方の手順(1) (3x+2)(4x2−3x−1)(3x+2)(4x^2-3x-1)(3x+2)(4x2−3x−1) を展開します。3x3x3xを(4x2−3x−1)(4x^2-3x-1)(4x2−3x−1)の各項に掛けます。3x×4x2=12x33x \times 4x^2 = 12x^33x×4x2=12x33x×(−3x)=−9x23x \times (-3x) = -9x^23x×(−3x)=−9x23x×(−1)=−3x3x \times (-1) = -3x3x×(−1)=−3x次に、2を(4x2−3x−1)(4x^2-3x-1)(4x2−3x−1)の各項に掛けます。2×4x2=8x22 \times 4x^2 = 8x^22×4x2=8x22×(−3x)=−6x2 \times (-3x) = -6x2×(−3x)=−6x2×(−1)=−22 \times (-1) = -22×(−1)=−2これらの項を全て足し合わせます。12x3−9x2−3x+8x2−6x−212x^3 - 9x^2 - 3x + 8x^2 - 6x - 212x3−9x2−3x+8x2−6x−2同類項をまとめます。12x3+(−9x2+8x2)+(−3x−6x)−212x^3 + (-9x^2 + 8x^2) + (-3x - 6x) - 212x3+(−9x2+8x2)+(−3x−6x)−212x3−x2−9x−212x^3 - x^2 - 9x - 212x3−x2−9x−2(2) (3x3−5x2+1)(1−x+2x2)(3x^3-5x^2+1)(1-x+2x^2)(3x3−5x2+1)(1−x+2x2)を展開します。3x33x^33x3を(1−x+2x2)(1-x+2x^2)(1−x+2x2)の各項に掛けます。3x3×1=3x33x^3 \times 1 = 3x^33x3×1=3x33x3×(−x)=−3x43x^3 \times (-x) = -3x^43x3×(−x)=−3x43x3×2x2=6x53x^3 \times 2x^2 = 6x^53x3×2x2=6x5次に、−5x2-5x^2−5x2を(1−x+2x2)(1-x+2x^2)(1−x+2x2)の各項に掛けます。−5x2×1=−5x2-5x^2 \times 1 = -5x^2−5x2×1=−5x2−5x2×(−x)=5x3-5x^2 \times (-x) = 5x^3−5x2×(−x)=5x3−5x2×2x2=−10x4-5x^2 \times 2x^2 = -10x^4−5x2×2x2=−10x4最後に、1を(1−x+2x2)(1-x+2x^2)(1−x+2x2)の各項に掛けます。1×1=11 \times 1 = 11×1=11×(−x)=−x1 \times (-x) = -x1×(−x)=−x1×2x2=2x21 \times 2x^2 = 2x^21×2x2=2x2これらの項を全て足し合わせます。6x5−3x4+3x3−10x4+5x3−5x2+2x2−x+16x^5 - 3x^4 + 3x^3 - 10x^4 + 5x^3 - 5x^2 + 2x^2 - x + 16x5−3x4+3x3−10x4+5x3−5x2+2x2−x+1同類項をまとめます。6x5+(−3x4−10x4)+(3x3+5x3)+(−5x2+2x2)−x+16x^5 + (-3x^4 - 10x^4) + (3x^3 + 5x^3) + (-5x^2 + 2x^2) - x + 16x5+(−3x4−10x4)+(3x3+5x3)+(−5x2+2x2)−x+16x5−13x4+8x3−3x2−x+16x^5 - 13x^4 + 8x^3 - 3x^2 - x + 16x5−13x4+8x3−3x2−x+13. 最終的な答え(1) 12x3−x2−9x−212x^3 - x^2 - 9x - 212x3−x2−9x−2(2) 6x5−13x4+8x3−3x2−x+16x^5 - 13x^4 + 8x^3 - 3x^2 - x + 16x5−13x4+8x3−3x2−x+1