次の5つの式を展開する問題です。 (1) $(x-y+z)^2$ (2) $(2a+3b-5c)^2$ (3) $(a^2+3a-2)(a^2+3a+3)$ (4) $(x^2+3x+2)(x^2-3x+2)$ (5) $(x+y+z)(x-y-z)$

代数学展開多項式
2025/4/20

1. 問題の内容

次の5つの式を展開する問題です。
(1) (xy+z)2(x-y+z)^2
(2) (2a+3b5c)2(2a+3b-5c)^2
(3) (a2+3a2)(a2+3a+3)(a^2+3a-2)(a^2+3a+3)
(4) (x2+3x+2)(x23x+2)(x^2+3x+2)(x^2-3x+2)
(5) (x+y+z)(xyz)(x+y+z)(x-y-z)

2. 解き方の手順

(1) (xy+z)2(x-y+z)^2
(xy+z)2=(xy+z)(xy+z)(x-y+z)^2 = (x-y+z)(x-y+z)
=x(xy+z)y(xy+z)+z(xy+z)= x(x-y+z) -y(x-y+z) + z(x-y+z)
=x2xy+xzyx+y2yz+zxzy+z2= x^2 -xy +xz -yx + y^2 -yz +zx -zy + z^2
=x2+y2+z22xy2yz+2xz= x^2 + y^2 + z^2 -2xy -2yz + 2xz
(2) (2a+3b5c)2(2a+3b-5c)^2
(2a+3b5c)2=(2a+3b5c)(2a+3b5c)(2a+3b-5c)^2 = (2a+3b-5c)(2a+3b-5c)
=2a(2a+3b5c)+3b(2a+3b5c)5c(2a+3b5c)= 2a(2a+3b-5c) + 3b(2a+3b-5c) -5c(2a+3b-5c)
=4a2+6ab10ac+6ab+9b215bc10ac15bc+25c2= 4a^2 +6ab -10ac + 6ab + 9b^2 -15bc -10ac -15bc +25c^2
=4a2+9b2+25c2+12ab20ac30bc= 4a^2 + 9b^2 + 25c^2 + 12ab -20ac -30bc
(3) (a2+3a2)(a2+3a+3)(a^2+3a-2)(a^2+3a+3)
a2+3a=Aa^2+3a = Aと置くと
(A2)(A+3)=A2+A6(A-2)(A+3) = A^2 + A -6
AAを元に戻すと
(a2+3a)2+(a2+3a)6(a^2+3a)^2 + (a^2+3a) -6
=a4+6a3+9a2+a2+3a6= a^4 + 6a^3 + 9a^2 + a^2 + 3a -6
=a4+6a3+10a2+3a6= a^4 + 6a^3 + 10a^2 + 3a -6
(4) (x2+3x+2)(x23x+2)(x^2+3x+2)(x^2-3x+2)
x2+2=Ax^2+2 = Aと置くと
(A+3x)(A3x)=A29x2(A+3x)(A-3x) = A^2 -9x^2
AAを元に戻すと
(x2+2)29x2=x4+4x2+49x2(x^2+2)^2 - 9x^2 = x^4 + 4x^2 + 4 - 9x^2
=x45x2+4= x^4 - 5x^2 + 4
(5) (x+y+z)(xyz)(x+y+z)(x-y-z)
y+z=Ay+z = Aと置くと
(x+A)(xA)=x2A2(x+A)(x-A) = x^2 - A^2
AAを元に戻すと
x2(y+z)2=x2(y2+2yz+z2)x^2 - (y+z)^2 = x^2 - (y^2 + 2yz + z^2)
=x2y2z22yz= x^2 - y^2 - z^2 - 2yz

3. 最終的な答え

(1) x2+y2+z22xy2yz+2xzx^2 + y^2 + z^2 -2xy -2yz + 2xz
(2) 4a2+9b2+25c2+12ab20ac30bc4a^2 + 9b^2 + 25c^2 + 12ab -20ac -30bc
(3) a4+6a3+10a2+3a6a^4 + 6a^3 + 10a^2 + 3a -6
(4) x45x2+4x^4 - 5x^2 + 4
(5) x2y2z22yzx^2 - y^2 - z^2 - 2yz