## 1. 問題の内容代数学分数式代数計算因数分解通分2025/4/21##1. 問題の内容与えられた4つの数式をそれぞれ計算し、最も簡単な形で表してください。(1) 2x+1+3x−2\frac{2}{x+1} + \frac{3}{x-2}x+12+x−23(2) xx−1−1x2−x\frac{x}{x-1} - \frac{1}{x^2 - x}x−1x−x2−x1(3) xx+1+3x−1x2−2x−3\frac{x}{x+1} + \frac{3x-1}{x^2 - 2x - 3}x+1x+x2−2x−33x−1(4) 3x+5x2−1−1x2+x\frac{3x+5}{x^2 - 1} - \frac{1}{x^2 + x}x2−13x+5−x2+x1##2. 解き方の手順(1) 2x+1+3x−2\frac{2}{x+1} + \frac{3}{x-2}x+12+x−23通分して計算します。2(x−2)(x+1)(x−2)+3(x+1)(x+1)(x−2)=2x−4+3x+3(x+1)(x−2)=5x−1(x+1)(x−2)=5x−1x2−x−2\frac{2(x-2)}{(x+1)(x-2)} + \frac{3(x+1)}{(x+1)(x-2)} = \frac{2x - 4 + 3x + 3}{(x+1)(x-2)} = \frac{5x - 1}{(x+1)(x-2)} = \frac{5x - 1}{x^2 - x - 2}(x+1)(x−2)2(x−2)+(x+1)(x−2)3(x+1)=(x+1)(x−2)2x−4+3x+3=(x+1)(x−2)5x−1=x2−x−25x−1(2) xx−1−1x2−x\frac{x}{x-1} - \frac{1}{x^2 - x}x−1x−x2−x1まず、分母を因数分解します。x2−x=x(x−1)x^2 - x = x(x-1)x2−x=x(x−1)xx−1−1x(x−1)\frac{x}{x-1} - \frac{1}{x(x-1)}x−1x−x(x−1)1通分して計算します。x2x(x−1)−1x(x−1)=x2−1x(x−1)=(x+1)(x−1)x(x−1)=x+1x\frac{x^2}{x(x-1)} - \frac{1}{x(x-1)} = \frac{x^2 - 1}{x(x-1)} = \frac{(x+1)(x-1)}{x(x-1)} = \frac{x+1}{x}x(x−1)x2−x(x−1)1=x(x−1)x2−1=x(x−1)(x+1)(x−1)=xx+1(3) xx+1+3x−1x2−2x−3\frac{x}{x+1} + \frac{3x-1}{x^2 - 2x - 3}x+1x+x2−2x−33x−1まず、分母を因数分解します。x2−2x−3=(x−3)(x+1)x^2 - 2x - 3 = (x-3)(x+1)x2−2x−3=(x−3)(x+1)xx+1+3x−1(x−3)(x+1)\frac{x}{x+1} + \frac{3x-1}{(x-3)(x+1)}x+1x+(x−3)(x+1)3x−1通分して計算します。x(x−3)(x+1)(x−3)+3x−1(x+1)(x−3)=x2−3x+3x−1(x+1)(x−3)=x2−1(x+1)(x−3)=(x+1)(x−1)(x+1)(x−3)=x−1x−3\frac{x(x-3)}{(x+1)(x-3)} + \frac{3x-1}{(x+1)(x-3)} = \frac{x^2 - 3x + 3x - 1}{(x+1)(x-3)} = \frac{x^2 - 1}{(x+1)(x-3)} = \frac{(x+1)(x-1)}{(x+1)(x-3)} = \frac{x-1}{x-3}(x+1)(x−3)x(x−3)+(x+1)(x−3)3x−1=(x+1)(x−3)x2−3x+3x−1=(x+1)(x−3)x2−1=(x+1)(x−3)(x+1)(x−1)=x−3x−1(4) 3x+5x2−1−1x2+x\frac{3x+5}{x^2 - 1} - \frac{1}{x^2 + x}x2−13x+5−x2+x1まず、分母を因数分解します。x2−1=(x−1)(x+1)x^2 - 1 = (x-1)(x+1)x2−1=(x−1)(x+1)x2+x=x(x+1)x^2 + x = x(x+1)x2+x=x(x+1)3x+5(x−1)(x+1)−1x(x+1)\frac{3x+5}{(x-1)(x+1)} - \frac{1}{x(x+1)}(x−1)(x+1)3x+5−x(x+1)1通分して計算します。x(3x+5)x(x−1)(x+1)−(x−1)x(x−1)(x+1)=3x2+5x−x+1x(x−1)(x+1)=3x2+4x+1x(x−1)(x+1)=(3x+1)(x+1)x(x−1)(x+1)=3x+1x(x−1)=3x+1x2−x\frac{x(3x+5)}{x(x-1)(x+1)} - \frac{(x-1)}{x(x-1)(x+1)} = \frac{3x^2 + 5x - x + 1}{x(x-1)(x+1)} = \frac{3x^2 + 4x + 1}{x(x-1)(x+1)} = \frac{(3x+1)(x+1)}{x(x-1)(x+1)} = \frac{3x+1}{x(x-1)} = \frac{3x+1}{x^2-x}x(x−1)(x+1)x(3x+5)−x(x−1)(x+1)(x−1)=x(x−1)(x+1)3x2+5x−x+1=x(x−1)(x+1)3x2+4x+1=x(x−1)(x+1)(3x+1)(x+1)=x(x−1)3x+1=x2−x3x+1##3. 最終的な答え(1) 5x−1x2−x−2\frac{5x - 1}{x^2 - x - 2}x2−x−25x−1(2) x+1x\frac{x+1}{x}xx+1(3) x−1x−3\frac{x-1}{x-3}x−3x−1(4) 3x+1x2−x\frac{3x+1}{x^2-x}x2−x3x+1