次の2つの式を因数分解します。 (1) $x^2 + xy + x + 3y - 6$ (3) $x^3 + x^2y + 2xy + y^2 - 1$代数学因数分解多項式2025/4/211. 問題の内容次の2つの式を因数分解します。(1) x2+xy+x+3y−6x^2 + xy + x + 3y - 6x2+xy+x+3y−6(3) x3+x2y+2xy+y2−1x^3 + x^2y + 2xy + y^2 - 1x3+x2y+2xy+y2−12. 解き方の手順(1) x2+xy+x+3y−6x^2 + xy + x + 3y - 6x2+xy+x+3y−6 を因数分解します。xxx について整理します。x2+(y+1)x+(3y−6)x^2 + (y+1)x + (3y-6)x2+(y+1)x+(3y−6)x2+(y+1)x+3(y−2)x^2 + (y+1)x + 3(y-2)x2+(y+1)x+3(y−2)たすき掛けを考えます。かけて 3(y−2)3(y-2)3(y−2) 、たして y+1y+1y+1 になる2つの式を探します。333 と y−2y-2y−2 という項に注目し、組み合わせを検討すると、 333 と y−2y-2y−2 より (x+3)(x+y−2)(x+3)(x+y-2) (x+3)(x+y−2)が考えられます。(x+3)(x+y−2)=x2+xy−2x+3x+3y−6=x2+xy+x+3y−6(x+3)(x+y-2) = x^2 + xy - 2x + 3x + 3y - 6 = x^2 + xy + x + 3y - 6(x+3)(x+y−2)=x2+xy−2x+3x+3y−6=x2+xy+x+3y−6よって、x2+xy+x+3y−6=(x+3)(x+y−2)x^2 + xy + x + 3y - 6 = (x+3)(x+y-2)x2+xy+x+3y−6=(x+3)(x+y−2)(3) x3+x2y+2xy+y2−1x^3 + x^2y + 2xy + y^2 - 1x3+x2y+2xy+y2−1 を因数分解します。x3+x2y+2xy+y2−1=x3+x2y+xy+xy+y2−1x^3 + x^2y + 2xy + y^2 - 1 = x^3 + x^2y + xy + xy + y^2 - 1x3+x2y+2xy+y2−1=x3+x2y+xy+xy+y2−1=x3+xy+x2y+xy+y2−1= x^3 + xy + x^2y + xy + y^2 - 1=x3+xy+x2y+xy+y2−1=x(x2+y)+y(x2+y)+xy+y2−1= x(x^2+y) + y(x^2+y) + xy + y^2 - 1=x(x2+y)+y(x2+y)+xy+y2−1x3+x2y+2xy+y2−1=x3+(x2+2x)y+y2−1x^3 + x^2y + 2xy + y^2 - 1 = x^3 + (x^2+2x)y + y^2 -1x3+x2y+2xy+y2−1=x3+(x2+2x)y+y2−1x3+x2y+2xy+y2−1=x3−1+x2y+2xy+y2x^3 + x^2y + 2xy + y^2 - 1 = x^3 -1+ x^2y + 2xy + y^2x3+x2y+2xy+y2−1=x3−1+x2y+2xy+y2=(x−1)(x2+x+1)+y(x2+2x+y)=(x-1)(x^2+x+1) + y(x^2+2x+y)=(x−1)(x2+x+1)+y(x2+2x+y)=(x−1)(x2+x+1)+y((x+y)2−x2)=(x-1)(x^2+x+1) + y((x+y)^2 -x^2)=(x−1)(x2+x+1)+y((x+y)2−x2)ここで、 x3+x2y+2xy+y2−1=x3+x2y+xy+xy+y2−1x^3 + x^2y + 2xy + y^2 - 1 = x^3 + x^2y + xy + xy + y^2 - 1x3+x2y+2xy+y2−1=x3+x2y+xy+xy+y2−1=x2(x+y)+(2x+y)y−1=x^2(x+y) + (2x + y)y - 1 =x2(x+y)+(2x+y)y−1x3+x2y+2xy+y2−1=x3+x2y+xy+xy+y2−1=x(x2+xy)+y(2x+y)−1x^3+x^2y+2xy+y^2-1 = x^3+x^2y+xy+xy+y^2-1 = x(x^2+xy)+y(2x+y)-1x3+x2y+2xy+y2−1=x3+x2y+xy+xy+y2−1=x(x2+xy)+y(2x+y)−1x3+x2y+2xy+y2−1=x3+x2y+xy+xy+y2−1x^3 + x^2y + 2xy + y^2 - 1 = x^3 + x^2y + xy+ xy+y^2-1x3+x2y+2xy+y2−1=x3+x2y+xy+xy+y2−1=x(x2+xy)+y(2x+y)−1=(x+y+1)(x2+xy−x−y+1)=(x−1)(x+y)+y(x+y)+y2−1=x(x^2+xy) + y(2x+y)-1 = (x+y+1)(x^2+xy-x-y+1) = (x-1)(x+y)+y(x+y)+y^2-1=x(x2+xy)+y(2x+y)−1=(x+y+1)(x2+xy−x−y+1)=(x−1)(x+y)+y(x+y)+y2−1x3+x2y+2xy+y2−1=x3−x2+x2+x2y−xy+xy+xy+xy+y2−1x^3+x^2y+2xy+y^2-1 = x^3-x^2+x^2+x^2y-xy+xy+xy+xy+y^2-1x3+x2y+2xy+y2−1=x3−x2+x2+x2y−xy+xy+xy+xy+y2−1x(x2+y+2y+y2)−1x(x^2 + y + 2y+y^2)-1x(x2+y+2y+y2)−1x3+x2y+xy+xy+y2−1x^3 + x^2y + xy+xy + y^2 - 1x3+x2y+xy+xy+y2−1x3−1+x2y+2xy+y2x^3-1 + x^2y+2xy+y^2x3−1+x2y+2xy+y2(x−1)(x2+x+1)+y(x2+2x+y)(x-1)(x^2+x+1) + y(x^2+2x+y)(x−1)(x2+x+1)+y(x2+2x+y)x3+x2y+2xy+y2−1=x3−1+x2y+2xy+y2=(x−1)(x2+x+1)+y(x2+2x+y)=(x+y−1)(x2+x+y+1)x^3+x^2y+2xy+y^2-1 = x^3-1+x^2y+2xy+y^2 = (x-1)(x^2+x+1)+ y(x^2+2x+y)=(x+y-1)(x^2 +x+y+1)x3+x2y+2xy+y2−1=x3−1+x2y+2xy+y2=(x−1)(x2+x+1)+y(x2+2x+y)=(x+y−1)(x2+x+y+1)=x3+x2y+x2−x2−xy−x−x2y+x2y+x2+y2 = x^3+x^2y+x^2-x^2-xy-x-x^2y+x^2y+x^2+y^2=x3+x2y+x2−x2−xy−x−x2y+x2y+x2+y2x3+x2y+2xy+y2−1=(x−1)(x2+x+1)+y(x2+2x+y)+y2−1x^3+x^2y+2xy+y^2-1 = (x-1)(x^2+x+1)+y(x^2+2x+y) + y^2 -1x3+x2y+2xy+y2−1=(x−1)(x2+x+1)+y(x2+2x+y)+y2−1x3−1+x2y+2xy+y2=x3+x2y+2xy+y2−1=(x+y−1)(x2+x+y+1)x^3-1+x^2y+2xy+y^2= x^3+x^2y+2xy+y^2-1 = (x+y-1)(x^2+x+y+1)x3−1+x2y+2xy+y2=x3+x2y+2xy+y2−1=(x+y−1)(x2+x+y+1)x−1x-1x−1をくくり出すといい?=(x+y)2=(x+y)^2=(x+y)2x3+x2y+2xy+y2−1=(x+y)2−1+(x−y)x^3+x^2y+2xy+y^2-1=(x+y)^2-1 + (x-y)x3+x2y+2xy+y2−1=(x+y)2−1+(x−y)3. 最終的な答え(1) (x+3)(x+y−2)(x+3)(x+y-2)(x+3)(x+y−2)(3) (x+y−1)(x2+x+y+1)(x+y-1)(x^2+x+y+1)(x+y−1)(x2+x+y+1)