与えられた式 $(x-y)^2 (x+y)^2 (x^2+y^2)^2$ を展開して簡単にします。代数学式の展開因数分解多項式2025/4/211. 問題の内容与えられた式 (x−y)2(x+y)2(x2+y2)2(x-y)^2 (x+y)^2 (x^2+y^2)^2(x−y)2(x+y)2(x2+y2)2 を展開して簡単にします。2. 解き方の手順まず、(x−y)2(x+y)2(x-y)^2(x+y)^2(x−y)2(x+y)2の部分を計算します。(x−y)(x+y)=x2−y2(x-y)(x+y) = x^2 - y^2(x−y)(x+y)=x2−y2 であることを利用します。(x−y)2(x+y)2=[(x−y)(x+y)]2=(x2−y2)2(x-y)^2(x+y)^2 = [(x-y)(x+y)]^2 = (x^2-y^2)^2(x−y)2(x+y)2=[(x−y)(x+y)]2=(x2−y2)2(x2−y2)2=(x2)2−2(x2)(y2)+(y2)2=x4−2x2y2+y4(x^2-y^2)^2 = (x^2)^2 - 2(x^2)(y^2) + (y^2)^2 = x^4 - 2x^2y^2 + y^4(x2−y2)2=(x2)2−2(x2)(y2)+(y2)2=x4−2x2y2+y4次に、(x4−2x2y2+y4)(x2+y2)2(x^4 - 2x^2y^2 + y^4)(x^2+y^2)^2(x4−2x2y2+y4)(x2+y2)2 を計算します。(x2+y2)2=(x2)2+2(x2)(y2)+(y2)2=x4+2x2y2+y4(x^2+y^2)^2 = (x^2)^2 + 2(x^2)(y^2) + (y^2)^2 = x^4 + 2x^2y^2 + y^4(x2+y2)2=(x2)2+2(x2)(y2)+(y2)2=x4+2x2y2+y4したがって、(x4−2x2y2+y4)(x4+2x2y2+y4)=(x4+y4−2x2y2)(x4+y4+2x2y2)(x^4 - 2x^2y^2 + y^4)(x^4 + 2x^2y^2 + y^4) = (x^4 + y^4 - 2x^2y^2)(x^4 + y^4 + 2x^2y^2)(x4−2x2y2+y4)(x4+2x2y2+y4)=(x4+y4−2x2y2)(x4+y4+2x2y2)=(x4+y4)2−(2x2y2)2= (x^4 + y^4)^2 - (2x^2y^2)^2=(x4+y4)2−(2x2y2)2=(x4)2+2(x4)(y4)+(y4)2−4x4y4= (x^4)^2 + 2(x^4)(y^4) + (y^4)^2 - 4x^4y^4=(x4)2+2(x4)(y4)+(y4)2−4x4y4=x8+2x4y4+y8−4x4y4= x^8 + 2x^4y^4 + y^8 - 4x^4y^4=x8+2x4y4+y8−4x4y4=x8−2x4y4+y8= x^8 - 2x^4y^4 + y^8=x8−2x4y4+y8=(x4)2−2(x4)(y4)+(y4)2= (x^4)^2 - 2(x^4)(y^4) + (y^4)^2=(x4)2−2(x4)(y4)+(y4)2=(x4−y4)2= (x^4 - y^4)^2=(x4−y4)2=[(x2)2−(y2)2]2= [(x^2)^2 - (y^2)^2]^2=[(x2)2−(y2)2]2=[(x2−y2)(x2+y2)]2= [(x^2-y^2)(x^2+y^2)]^2=[(x2−y2)(x2+y2)]2=[(x−y)(x+y)(x2+y2)]2= [(x-y)(x+y)(x^2+y^2)]^2=[(x−y)(x+y)(x2+y2)]2=[x4−y4]2=x8−2x4y4+y8= [x^4 - y^4]^2 = x^8 - 2x^4y^4 + y^8=[x4−y4]2=x8−2x4y4+y83. 最終的な答えx8−2x4y4+y8x^8 - 2x^4y^4 + y^8x8−2x4y4+y8