$\sin(\theta + \frac{\pi}{3}) + \sin(\theta - \frac{\pi}{3}) - \sin \theta$ の値を求めよ。解析学三角関数加法定理三角関数の合成sin2025/3/171. 問題の内容sin(θ+π3)+sin(θ−π3)−sinθ\sin(\theta + \frac{\pi}{3}) + \sin(\theta - \frac{\pi}{3}) - \sin \thetasin(θ+3π)+sin(θ−3π)−sinθ の値を求めよ。2. 解き方の手順まず、三角関数の加法定理を用いて sin(θ+π3)\sin(\theta + \frac{\pi}{3})sin(θ+3π) と sin(θ−π3)\sin(\theta - \frac{\pi}{3})sin(θ−3π) を展開します。sin(θ+π3)=sinθcosπ3+cosθsinπ3\sin(\theta + \frac{\pi}{3}) = \sin \theta \cos \frac{\pi}{3} + \cos \theta \sin \frac{\pi}{3}sin(θ+3π)=sinθcos3π+cosθsin3πsin(θ−π3)=sinθcosπ3−cosθsinπ3\sin(\theta - \frac{\pi}{3}) = \sin \theta \cos \frac{\pi}{3} - \cos \theta \sin \frac{\pi}{3}sin(θ−3π)=sinθcos3π−cosθsin3πここで、cosπ3=12\cos \frac{\pi}{3} = \frac{1}{2}cos3π=21 と sinπ3=32\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}sin3π=23 であるから、sin(θ+π3)=12sinθ+32cosθ\sin(\theta + \frac{\pi}{3}) = \frac{1}{2} \sin \theta + \frac{\sqrt{3}}{2} \cos \thetasin(θ+3π)=21sinθ+23cosθsin(θ−π3)=12sinθ−32cosθ\sin(\theta - \frac{\pi}{3}) = \frac{1}{2} \sin \theta - \frac{\sqrt{3}}{2} \cos \thetasin(θ−3π)=21sinθ−23cosθしたがって、sin(θ+π3)+sin(θ−π3)−sinθ=(12sinθ+32cosθ)+(12sinθ−32cosθ)−sinθ\sin(\theta + \frac{\pi}{3}) + \sin(\theta - \frac{\pi}{3}) - \sin \theta = (\frac{1}{2} \sin \theta + \frac{\sqrt{3}}{2} \cos \theta) + (\frac{1}{2} \sin \theta - \frac{\sqrt{3}}{2} \cos \theta) - \sin \thetasin(θ+3π)+sin(θ−3π)−sinθ=(21sinθ+23cosθ)+(21sinθ−23cosθ)−sinθ=12sinθ+32cosθ+12sinθ−32cosθ−sinθ= \frac{1}{2} \sin \theta + \frac{\sqrt{3}}{2} \cos \theta + \frac{1}{2} \sin \theta - \frac{\sqrt{3}}{2} \cos \theta - \sin \theta=21sinθ+23cosθ+21sinθ−23cosθ−sinθ=sinθ−sinθ= \sin \theta - \sin \theta=sinθ−sinθ=0= 0=03. 最終的な答え0