We will integrate term by term. Recall that the power rule for integration is:
∫xndx=n+1xn+1+C First, we integrate 5x4: ∫5x4dx=5∫x4dx=5⋅4+1x4+1=5⋅5x5=x5 Second, we integrate −3x2: ∫−3x2dx=−3∫x2dx=−3⋅2+1x2+1=−3⋅3x3=−x3 Third, we integrate 23x. Note that x=x21. ∫23xdx=23∫x21dx=23⋅21+1x21+1=23⋅23x23=23⋅32⋅x23=x23 Therefore, the integral is:
∫(5x4−3x2+23x)dx=x5−x3+x23+C