The problem asks us to evaluate the integral $\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx$.

AnalysisIntegrationCalculusTrigonometrySubstitution
2025/3/17

1. Problem Description

The problem asks us to evaluate the integral x2+72(xsinx+9cosx)2dx\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx.

2. Solution Steps

Let u=xsinx+9cosxu = x \sin x + 9 \cos x. Then,
du=(sinx+xcosx9sinx)dx=(xcosx8sinx)dxdu = (\sin x + x \cos x - 9 \sin x) dx = (x \cos x - 8 \sin x) dx
We want to express x2+72x^2 + 72 in terms of uu and dudu. Notice that
xcosx8sinxxsinx+9cosx \frac{x \cos x - 8 \sin x}{x \sin x + 9 \cos x}
doesn't seem to help. Instead, consider
ddx(f(x)xsinx+9cosx)=f(x)(xsinx+9cosx)f(x)(xcosx8sinx)(xsinx+9cosx)2 \frac{d}{dx} \left( \frac{f(x)}{x \sin x + 9 \cos x} \right) = \frac{f'(x) (x \sin x + 9 \cos x) - f(x) (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}
Let f(x)=Ax+Bf(x) = A x + B, so f(x)=Af'(x) = A. Then
A(xsinx+9cosx)(Ax+B)(xcosx8sinx)(xsinx+9cosx)2 \frac{A (x \sin x + 9 \cos x) - (Ax + B) (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}
=Axsinx+9AcosxAx2cosx+8AxsinxBxcosx+8Bsinx(xsinx+9cosx)2 = \frac{Ax \sin x + 9A \cos x - Ax^2 \cos x + 8Ax \sin x - Bx \cos x + 8B \sin x}{(x \sin x + 9 \cos x)^2}
=Ax2cosx+(9ABx)cosx+(9Ax+8B)sinx(xsinx+9cosx)2 = \frac{-Ax^2 \cos x + (9A-Bx) \cos x + (9Ax+8B) \sin x }{(x \sin x + 9 \cos x)^2}
Consider xxsinx+9cosx\frac{x}{x \sin x + 9 \cos x}. The derivative is
(xsinx+9cosx)x(xcosx8sinx)(xsinx+9cosx)2=xsinx+9cosxx2cosx+8xsinx(xsinx+9cosx)2=x2cosx+9xsinx+9cosx(xsinx+9cosx)2 \frac{(x \sin x + 9 \cos x) - x (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{x \sin x + 9 \cos x - x^2 \cos x + 8x \sin x}{(x \sin x + 9 \cos x)^2} = \frac{-x^2 \cos x + 9x \sin x + 9 \cos x}{(x \sin x + 9 \cos x)^2}
Consider sinxxsinx+9cosx\frac{\sin x}{x \sin x + 9 \cos x}. The derivative is
cosx(xsinx+9cosx)sinx(xcosx8sinx)(xsinx+9cosx)2=xsinxcosx+9cos2xxsinxcosx+8sin2x(xsinx+9cosx)2=9cos2x+8sin2x(xsinx+9cosx)2 \frac{\cos x (x \sin x + 9 \cos x) - \sin x (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{x \sin x \cos x + 9 \cos^2 x - x \sin x \cos x + 8 \sin^2 x}{(x \sin x + 9 \cos x)^2} = \frac{9 \cos^2 x + 8 \sin^2 x}{(x \sin x + 9 \cos x)^2}
Consider cosxxsinx+9cosx\frac{\cos x}{x \sin x + 9 \cos x}. The derivative is
sinx(xsinx+9cosx)cosx(xcosx8sinx)(xsinx+9cosx)2=xsin2x9sinxcosxxcos2x+8sinxcosx(xsinx+9cosx)2=xsinxcosx(xsinx+9cosx)2 \frac{-\sin x (x \sin x + 9 \cos x) - \cos x (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{-x \sin^2 x - 9 \sin x \cos x - x \cos^2 x + 8 \sin x \cos x}{(x \sin x + 9 \cos x)^2} = \frac{-x - \sin x \cos x}{(x \sin x + 9 \cos x)^2}
Try the derivative of Ax+Bxsinx+9cosx\frac{Ax+B}{x \sin x + 9 \cos x}:
A(xsinx+9cosx)(Ax+B)(xcosx8sinx)(xsinx+9cosx)2=Axsinx+9AcosxAx2cosx+8AxsinxBxcosx+8Bsinx(xsinx+9cosx)2=Ax2cosx+(9ABx)cosx+(9A+8B)xsinx+8Bsinx(xsinx+9cosx)2\frac{A(x \sin x + 9 \cos x) - (Ax+B)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{Ax \sin x + 9A \cos x - Ax^2 \cos x + 8Ax \sin x - Bx \cos x + 8B \sin x}{(x \sin x + 9 \cos x)^2} = \frac{-Ax^2 \cos x + (9A-Bx) \cos x + (9A+8B)x \sin x + 8B \sin x}{(x \sin x + 9 \cos x)^2}
Try something simpler.
Notice that
ddxsinxxsinx+9cosx=(xsinx+9cosx)cosx(sinx)(xcosx8sinx)(xsinx+9cosx)2=xsinxcosx+9cos2xxsinxcosx+8sin2x(xsinx+9cosx)2=9cos2x+8sin2x(xsinx+9cosx)2\frac{d}{dx} \frac{\sin x}{x \sin x + 9 \cos x} = \frac{(x \sin x + 9 \cos x)\cos x - (\sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{x \sin x \cos x + 9 \cos^2 x - x \sin x \cos x + 8 \sin^2 x}{(x \sin x + 9 \cos x)^2} = \frac{9 \cos^2 x + 8 \sin^2 x}{(x \sin x + 9 \cos x)^2}
ddxxcosxxsinx+9cosx=(xsinx+9cosx)(cosxxsinx)(xcosx)(xcosx8sinx)(xsinx+9cosx)2=xsinxcosx+9cos2xx2sin2x9xsinxcosxx2cos2x+8xcosxsinx(xsinx+9cosx)2=9cos2xx28xsinxcosx(xsinx+9cosx)2\frac{d}{dx} \frac{x \cos x}{x \sin x + 9 \cos x} = \frac{(x \sin x + 9 \cos x)(\cos x - x \sin x) - (x \cos x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{x \sin x \cos x + 9 \cos^2 x - x^2 \sin^2 x - 9x \sin x \cos x - x^2 \cos^2 x + 8 x \cos x \sin x}{(x \sin x + 9 \cos x)^2} = \frac{9 \cos^2 x - x^2 - 8 x \sin x \cos x}{(x \sin x + 9 \cos x)^2}
Let's look at xcosx9sinxxsinx+9cosx\frac{x \cos x - 9 \sin x}{x \sin x + 9 \cos x}. Taking the derivative yields (xsinx+9cosx)(cosxxsinx9cosx)(xcosx9sinx)(xcosx8sinx)(xsinx+9cosx)2=(xsinx+9cosx)(xsinx8cosx)(xcosx9sinx)(xcosx8sinx)(xsinx+9cosx)2=x2+72(xsinx+9cosx)2\frac{(x \sin x + 9 \cos x)(\cos x - x \sin x - 9 \cos x) - (x \cos x - 9 \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{(x \sin x + 9 \cos x)(-x \sin x - 8 \cos x) - (x \cos x - 9 \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = -\frac{x^2+72}{(x \sin x + 9 \cos x)^2}. Therefore, x2+72(xsinx+9cosx)2dx=xcosx9sinxxsinx+9cosx+C\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = -\frac{x \cos x - 9 \sin x}{x \sin x + 9 \cos x} + C.

3. Final Answer

xcosx9sinxxsinx+9cosx+C-\frac{x \cos x - 9 \sin x}{x \sin x + 9 \cos x} + C

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1