Let u=xsinx+9cosx. Then, du=(sinx+xcosx−9sinx)dx=(xcosx−8sinx)dx We want to express x2+72 in terms of u and du. Notice that xsinx+9cosxxcosx−8sinx doesn't seem to help. Instead, consider
dxd(xsinx+9cosxf(x))=(xsinx+9cosx)2f′(x)(xsinx+9cosx)−f(x)(xcosx−8sinx) Let f(x)=Ax+B, so f′(x)=A. Then (xsinx+9cosx)2A(xsinx+9cosx)−(Ax+B)(xcosx−8sinx) =(xsinx+9cosx)2Axsinx+9Acosx−Ax2cosx+8Axsinx−Bxcosx+8Bsinx =(xsinx+9cosx)2−Ax2cosx+(9A−Bx)cosx+(9Ax+8B)sinx Consider xsinx+9cosxx. The derivative is (xsinx+9cosx)2(xsinx+9cosx)−x(xcosx−8sinx)=(xsinx+9cosx)2xsinx+9cosx−x2cosx+8xsinx=(xsinx+9cosx)2−x2cosx+9xsinx+9cosx Consider xsinx+9cosxsinx. The derivative is (xsinx+9cosx)2cosx(xsinx+9cosx)−sinx(xcosx−8sinx)=(xsinx+9cosx)2xsinxcosx+9cos2x−xsinxcosx+8sin2x=(xsinx+9cosx)29cos2x+8sin2x Consider xsinx+9cosxcosx. The derivative is (xsinx+9cosx)2−sinx(xsinx+9cosx)−cosx(xcosx−8sinx)=(xsinx+9cosx)2−xsin2x−9sinxcosx−xcos2x+8sinxcosx=(xsinx+9cosx)2−x−sinxcosx Try the derivative of xsinx+9cosxAx+B: (xsinx+9cosx)2A(xsinx+9cosx)−(Ax+B)(xcosx−8sinx)=(xsinx+9cosx)2Axsinx+9Acosx−Ax2cosx+8Axsinx−Bxcosx+8Bsinx=(xsinx+9cosx)2−Ax2cosx+(9A−Bx)cosx+(9A+8B)xsinx+8Bsinx Try something simpler.
Notice that
dxdxsinx+9cosxsinx=(xsinx+9cosx)2(xsinx+9cosx)cosx−(sinx)(xcosx−8sinx)=(xsinx+9cosx)2xsinxcosx+9cos2x−xsinxcosx+8sin2x=(xsinx+9cosx)29cos2x+8sin2x dxdxsinx+9cosxxcosx=(xsinx+9cosx)2(xsinx+9cosx)(cosx−xsinx)−(xcosx)(xcosx−8sinx)=(xsinx+9cosx)2xsinxcosx+9cos2x−x2sin2x−9xsinxcosx−x2cos2x+8xcosxsinx=(xsinx+9cosx)29cos2x−x2−8xsinxcosx Let's look at xsinx+9cosxxcosx−9sinx. Taking the derivative yields (xsinx+9cosx)2(xsinx+9cosx)(cosx−xsinx−9cosx)−(xcosx−9sinx)(xcosx−8sinx)=(xsinx+9cosx)2(xsinx+9cosx)(−xsinx−8cosx)−(xcosx−9sinx)(xcosx−8sinx)=−(xsinx+9cosx)2x2+72. Therefore, ∫(xsinx+9cosx)2x2+72dx=−xsinx+9cosxxcosx−9sinx+C.