We will use integration by parts twice. The formula for integration by parts is:
∫udv=uv−∫vdu First, let u=sinx and dv=e2xdx. Then du=cosxdx and v=∫e2xdx=21e2x. Applying integration by parts, we get:
∫e2xsinxdx=(sinx)(21e2x)−∫(21e2x)(cosx)dx ∫e2xsinxdx=21e2xsinx−21∫e2xcosxdx Now, we need to evaluate ∫e2xcosxdx. We use integration by parts again. Let u=cosx and dv=e2xdx. Then du=−sinxdx and v=∫e2xdx=21e2x. Applying integration by parts, we get:
∫e2xcosxdx=(cosx)(21e2x)−∫(21e2x)(−sinx)dx ∫e2xcosxdx=21e2xcosx+21∫e2xsinxdx Substitute this back into the first equation:
∫e2xsinxdx=21e2xsinx−21(21e2xcosx+21∫e2xsinxdx) ∫e2xsinxdx=21e2xsinx−41e2xcosx−41∫e2xsinxdx Now, we solve for ∫e2xsinxdx. ∫e2xsinxdx+41∫e2xsinxdx=21e2xsinx−41e2xcosx 45∫e2xsinxdx=21e2xsinx−41e2xcosx ∫e2xsinxdx=54(21e2xsinx−41e2xcosx) ∫e2xsinxdx=52e2xsinx−51e2xcosx+C ∫e2xsinxdx=51e2x(2sinx−cosx)+C