次の3つの式を簡単にします。 (1) $\sqrt[3]{4}\sqrt[3]{2} = (1)$ (2) $\sqrt[3]{54} \div \sqrt[3]{2} = (2)$ (3) $\sqrt[3]{\sqrt{64}} = (3)$

算数根号立方根計算
2025/3/17

1. 問題の内容

次の3つの式を簡単にします。
(1) 4323=(1)\sqrt[3]{4}\sqrt[3]{2} = (1)
(2) 543÷23=(2)\sqrt[3]{54} \div \sqrt[3]{2} = (2)
(3) 643=(3)\sqrt[3]{\sqrt{64}} = (3)

2. 解き方の手順

(1) 4323\sqrt[3]{4}\sqrt[3]{2}
根号の中をかけます。
4×23=83\sqrt[3]{4 \times 2} = \sqrt[3]{8}
83=2\sqrt[3]{8} = 2
(2) 543÷23\sqrt[3]{54} \div \sqrt[3]{2}
根号の中を割ります。
54÷23=273\sqrt[3]{54 \div 2} = \sqrt[3]{27}
273=3\sqrt[3]{27} = 3
(3) 643\sqrt[3]{\sqrt{64}}
まず、内側の根号を計算します。
64=8\sqrt{64} = 8
次に、外側の根号を計算します。
83=2\sqrt[3]{8} = 2

3. 最終的な答え

(1) 2
(2) 3
(3) 2

「算数」の関連問題

Aさんは駅から右方向に進み、20日で駅に戻ります。Bさんは駅から左方向に進み、10日で駅に戻ります。運行本数と運行間隔が同じとき、同じ駅でAさんとBさんはいつ出会うかを求める問題です。

最小公倍数周期算数応用
2025/7/25

小学校算数の問題で、小数の仕組み、単位換算、数の大小比較について問われています。

小数単位換算数の比較
2025/7/25

次の偶数の和 $S$ を求める問題です。 $2 + 4 + 6 + 8 + \dots + 38$

等差数列数列の和和の公式
2025/7/25

同じ重さの荷物7個を10kgの台車に乗せたら、重さの合計は45kgになりました。荷物1個の重さを求めなさい。

文章問題一次方程式計算
2025/7/25

10進数の255を2進数で表す問題を解きます。

進数変換2進数
2025/7/25

与えられた式 $-\sqrt{10} - 3\sqrt{10} + 5\sqrt{2} - \sqrt{32}$ を計算して簡略化する問題です。

平方根計算式の簡略化
2025/7/25

与えられた数式の値を計算します。数式は $-\sqrt{2} + 5\sqrt{8} + \sqrt{50}$ です。

平方根計算
2025/7/25

$29^2$ の値を計算する問題です。

計算二乗四則演算
2025/7/25

$48 \times 52$ を計算する問題です。$48 = 50-2$、$52 = 50+2$ と変形して計算します。

計算掛け算公式
2025/7/25

与えられた分数をそれぞれ約分し、最も簡単な形にすることを求めます。問題は(15)から(28)まで、合計14個あります。

分数約分最大公約数(GCD)
2025/7/25