Let's analyze the derivative of xsinx+9cosxsinx. Using the quotient rule, we have:
dxd(xsinx+9cosxsinx)=(xsinx+9cosx)2cosx(xsinx+9cosx)−sinx(sinx+xcosx−9sinx) =(xsinx+9cosx)2xsinxcosx+9cos2x−sin2x−xsinxcosx+9sin2x =(xsinx+9cosx)29(cos2x+sin2x)−(sin2x)=(xsinx+9cosx)29−sin2x. Now let's analyze the derivative of xsinx+9cosx−xcosx. dxd(xsinx+9cosx−xcosx)=(xsinx+9cosx)2(−cosx+xsinx)(xsinx+9cosx)−(−xcosx)(sinx+xcosx−9sinx) =(xsinx+9cosx)2−xsinxcosx−9cos2x+x2sin2x+9xsinxcosx+xsinxcosx+x2cos2x−9xsinxcosx =(xsinx+9cosx)2−9cos2x+x2(sin2x+cos2x)=(xsinx+9cosx)2x2−9cos2x. We notice that (xsinx+9cosx)2x2+72=(xsinx+9cosx)2(x2−9cos2x)+(9−sin2x)+9cos2x+sin2x+63=(xsinx+9cosx)2x2−9cos2x+(xsinx+9cosx)29−sin2x+(xsinx+9cosx)263. Let's consider dxd(xsinx+9cosxsinx−xcosx). Using the quotient rule, we have:
dxd(xsinx+9cosxsinx−xcosx)=(xsinx+9cosx)2(cosx−cosx+xsinx)(xsinx+9cosx)−(sinx−xcosx)(sinx+xcosx−9sinx) =(xsinx+9cosx)2x2sin2x+9xsinxcosx−(sin2x+xsinxcosx−9sin2x−xsinxcosx−x2cos2x+9xcosxsinx) =(xsinx+9cosx)2x2sin2x+9xsinxcosx−sin2x−xsinxcosx+9sin2x+xsinxcosx+x2cos2x−9xsinxcosx =(xsinx+9cosx)2x2(sin2x+cos2x)+8sin2x=(xsinx+9cosx)2x2+8sin2x+72−8sin2x−72=(xsinx+9cosx)2x2+72−8sin2x−72 We observe that dxd(xsinx+9cosxsinx−xsinx+9cosxxcosx)=(xsinx+9cosx)29−sin2x+x2−9cos2x=(xsinx+9cosx)2x2−9cos2x+9−sin2x. Hence we want to integrate ∫(xsinx+9cosx)2x2+72dx. Let u=xsinx+9cosx−xcosx+sinx. Then dxdu=(xsin(x)+9cos(x))2x2+8sin2(x). Consider I=∫(xsinx+9cosx)2x2+72dx=∫(xsinx+9cosx)2x2+81−9+72dx. Let's try (xsinx+9cosx)xsinx−9cosx. Then I=(xsinx+9cosx)xsinx−9cosx Final guess:
∫(xsinx+9cosx)2x2+72dx=xsinx+9cosx−xcosx+sinx+C=xsinx+9cosxsinx−xcosx+C. dxd(xsinx+9cosxsinx−xcosx)=(xsinx+9cosx)2x2+8sin2(x) Not quite.
(xsinx+9cosx)xsinx−9cosx.