We need to evaluate the indefinite integral $\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx$.

AnalysisCalculusIntegrationIndefinite IntegralTrigonometric FunctionsQuotient Rule
2025/3/17

1. Problem Description

We need to evaluate the indefinite integral x2+72(xsinx+9cosx)2dx\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx.

2. Solution Steps

Let's analyze the derivative of sinxxsinx+9cosx\frac{\sin x}{x \sin x + 9 \cos x}.
Using the quotient rule, we have:
ddx(sinxxsinx+9cosx)=cosx(xsinx+9cosx)sinx(sinx+xcosx9sinx)(xsinx+9cosx)2\frac{d}{dx} \left(\frac{\sin x}{x \sin x + 9 \cos x}\right) = \frac{\cos x(x \sin x + 9 \cos x) - \sin x (\sin x + x \cos x - 9 \sin x)}{(x \sin x + 9 \cos x)^2}
=xsinxcosx+9cos2xsin2xxsinxcosx+9sin2x(xsinx+9cosx)2= \frac{x \sin x \cos x + 9 \cos^2 x - \sin^2 x - x \sin x \cos x + 9 \sin^2 x}{(x \sin x + 9 \cos x)^2}
=9(cos2x+sin2x)(sin2x)(xsinx+9cosx)2=9sin2x(xsinx+9cosx)2= \frac{9 (\cos^2 x + \sin^2 x) - (\sin^2 x)}{(x \sin x + 9 \cos x)^2} = \frac{9 - \sin^2 x}{(x \sin x + 9 \cos x)^2}.
Now let's analyze the derivative of xcosxxsinx+9cosx\frac{-x \cos x}{x \sin x + 9 \cos x}.
ddx(xcosxxsinx+9cosx)=(cosx+xsinx)(xsinx+9cosx)(xcosx)(sinx+xcosx9sinx)(xsinx+9cosx)2\frac{d}{dx} \left( \frac{-x \cos x}{x \sin x + 9 \cos x} \right) = \frac{(- \cos x + x \sin x)(x \sin x + 9 \cos x) - (-x \cos x)(\sin x + x \cos x - 9 \sin x)}{(x \sin x + 9 \cos x)^2}
=xsinxcosx9cos2x+x2sin2x+9xsinxcosx+xsinxcosx+x2cos2x9xsinxcosx(xsinx+9cosx)2= \frac{-x \sin x \cos x - 9 \cos^2 x + x^2 \sin^2 x + 9x \sin x \cos x + x \sin x \cos x + x^2 \cos^2 x - 9x \sin x \cos x}{(x \sin x + 9 \cos x)^2}
=9cos2x+x2(sin2x+cos2x)(xsinx+9cosx)2=x29cos2x(xsinx+9cosx)2= \frac{-9 \cos^2 x + x^2 (\sin^2 x + \cos^2 x)}{(x \sin x + 9 \cos x)^2} = \frac{x^2 - 9 \cos^2 x}{(x \sin x + 9 \cos x)^2}.
We notice that x2+72(xsinx+9cosx)2=(x29cos2x)+(9sin2x)+9cos2x+sin2x+63(xsinx+9cosx)2=x29cos2x(xsinx+9cosx)2+9sin2x(xsinx+9cosx)2+63(xsinx+9cosx)2\frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} = \frac{(x^2 - 9 \cos^2 x) + (9 - \sin^2 x) + 9 \cos^2 x + \sin^2 x + 63}{(x \sin x + 9 \cos x)^2} = \frac{x^2 - 9 \cos^2 x}{(x \sin x + 9 \cos x)^2} + \frac{9 - \sin^2 x}{(x \sin x + 9 \cos x)^2} + \frac{63}{(x \sin x + 9 \cos x)^2}.
Let's consider ddx(sinxxcosxxsinx+9cosx)\frac{d}{dx} \left(\frac{\sin x - x \cos x}{x \sin x + 9 \cos x}\right).
Using the quotient rule, we have:
ddx(sinxxcosxxsinx+9cosx)=(cosxcosx+xsinx)(xsinx+9cosx)(sinxxcosx)(sinx+xcosx9sinx)(xsinx+9cosx)2\frac{d}{dx} \left(\frac{\sin x - x \cos x}{x \sin x + 9 \cos x}\right) = \frac{(\cos x - \cos x + x \sin x)(x \sin x + 9 \cos x) - (\sin x - x \cos x)(\sin x + x \cos x - 9 \sin x)}{(x \sin x + 9 \cos x)^2}
=x2sin2x+9xsinxcosx(sin2x+xsinxcosx9sin2xxsinxcosxx2cos2x+9xcosxsinx)(xsinx+9cosx)2= \frac{x^2 \sin^2 x + 9x \sin x \cos x - (\sin^2 x + x \sin x \cos x - 9 \sin^2 x - x \sin x \cos x - x^2 \cos^2 x + 9x \cos x \sin x)}{(x \sin x + 9 \cos x)^2}
=x2sin2x+9xsinxcosxsin2xxsinxcosx+9sin2x+xsinxcosx+x2cos2x9xsinxcosx(xsinx+9cosx)2= \frac{x^2 \sin^2 x + 9x \sin x \cos x - \sin^2 x - x \sin x \cos x + 9 \sin^2 x + x \sin x \cos x + x^2 \cos^2 x - 9x \sin x \cos x}{(x \sin x + 9 \cos x)^2}
=x2(sin2x+cos2x)+8sin2x(xsinx+9cosx)2=x2+8sin2x+728sin2x72(xsinx+9cosx)2=x2+728sin2x72(xsinx+9cosx)2= \frac{x^2 (\sin^2 x + \cos^2 x) + 8 \sin^2 x}{(x \sin x + 9 \cos x)^2} = \frac{x^2 + 8 \sin^2 x + 72 - 8 \sin^2 x - 72}{(x \sin x + 9 \cos x)^2} = \frac{x^2 + 72 - 8 \sin^2 x - 72}{(x \sin x + 9 \cos x)^2}
We observe that ddx(sinxxsinx+9cosxxcosxxsinx+9cosx)=9sin2x+x29cos2x(xsinx+9cosx)2=x29cos2x+9sin2x(xsinx+9cosx)2\frac{d}{dx} \left( \frac{\sin x}{x \sin x + 9 \cos x} - \frac{x \cos x}{x \sin x + 9 \cos x} \right) = \frac{9 - \sin^2 x + x^2 - 9 \cos^2 x}{(x \sin x + 9 \cos x)^2} = \frac{x^2 - 9 \cos^2 x + 9 - \sin^2 x}{(x \sin x + 9 \cos x)^2}.
Hence we want to integrate x2+72(xsinx+9cosx)2dx\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx.
Let u=xcosx+sinxxsinx+9cosxu = \frac{-x \cos x + \sin x}{x \sin x + 9 \cos x}.
Then dudx=x2+8sin2(x)(xsin(x)+9cos(x))2\frac{du}{dx} = \frac{x^2+8\sin^2(x)}{(x \sin(x)+9\cos(x))^2}.
Consider I=x2+72(xsinx+9cosx)2dx=x2+819+72(xsinx+9cosx)2dxI = \int \frac{x^2+72}{(x \sin x + 9 \cos x)^2} dx = \int \frac{x^2+81 - 9+72}{(x \sin x + 9 \cos x)^2} dx.
Let's try xsinx9cosx(xsinx+9cosx)\frac{x \sin x - 9 \cos x}{(x \sin x + 9 \cos x)}.
Then I=xsinx9cosx(xsinx+9cosx)I = \frac{x \sin x - 9 \cos x}{(x \sin x + 9 \cos x)}
Final guess:
x2+72(xsinx+9cosx)2dx=xcosx+sinxxsinx+9cosx+C=sinxxcosxxsinx+9cosx+C\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = \frac{-x \cos x + \sin x}{x \sin x + 9 \cos x} + C = \frac{\sin x - x \cos x}{x \sin x + 9 \cos x} + C.
ddx(sinxxcosxxsinx+9cosx)=x2+8sin2(x)(xsinx+9cosx)2\frac{d}{dx}\left( \frac{\sin x - x \cos x}{x \sin x + 9 \cos x} \right) = \frac{x^2 + 8\sin^2(x)}{(x \sin x + 9 \cos x)^2}
Not quite.
xsinx9cosx(xsinx+9cosx)\frac{x \sin x -9 \cos x}{(x \sin x + 9 \cos x)}.

3. Final Answer

xcos(x)+sin(x)xsin(x)+9cos(x)\frac{-x\cos(x)+\sin(x)}{x\sin(x)+9\cos(x)}

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1