We need to evaluate the integral $\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx$.

AnalysisIntegrationIntegration by PartsTrigonometric Functions
2025/3/17

1. Problem Description

We need to evaluate the integral x2+72(xsinx+9cosx)2dx\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx.

2. Solution Steps

We will use integration by parts to solve the integral. Let's first rewrite the numerator as follows:
x2+72=x2+819=(x2+81)9x^2 + 72 = x^2 + 81 - 9 = (x^2 + 81) - 9.
Then we can rewrite the integral as
x2+72(xsinx+9cosx)2dx=x2+819(xsinx+9cosx)2dx\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = \int \frac{x^2 + 81 - 9}{(x \sin x + 9 \cos x)^2} dx.
Let u=xsinx+9cosxu = x \sin x + 9 \cos x. Then the derivative of uu with respect to xx is:
dudx=sinx+xcosx9sinx=xcosx8sinx\frac{du}{dx} = \sin x + x \cos x - 9 \sin x = x \cos x - 8 \sin x.
Now, let's rewrite the integral in terms of sinx\sin x and cosx\cos x. We can write the numerator as x2+72=x2+929x^2 + 72 = x^2 + 9^2 - 9.
Let's try to manipulate the integral into the form f(x)[f(x)]2dx\int \frac{f'(x)}{[f(x)]^2} dx. If f(x)=xsinx+9cosxf(x) = x \sin x + 9 \cos x, then f(x)=xcosx8sinxf'(x) = x \cos x - 8 \sin x.
Now let us consider Axcosx+Bsinx(xsinx+9cosx)\frac{Ax \cos x + B \sin x}{(x \sin x + 9 \cos x)}. Its derivative is:
(AcosxAxsinx+Bcosx)(xsinx+9cosx)(Axcosx+Bsinx)(xcosx8sinx)(xsinx+9cosx)2\frac{(A \cos x - Ax \sin x + B \cos x)(x \sin x + 9 \cos x) - (Ax \cos x + B \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}.
Let us assume the integral is of the form Axcosx+Bsinxxsinx+9cosx\frac{Ax \cos x + B \sin x}{x \sin x + 9 \cos x}. Then differentiating it, we get
(xsinx+9cosx)(AcosxAxsinx+Bsinx+Bxcosx)(Axcosx+Bsinx)(xcosx8sinx)(xsinx+9cosx)2\frac{(x \sin x + 9 \cos x)(A \cos x - Ax \sin x + B \sin x + Bx \cos x) - (Ax \cos x + B \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}.
The numerator is
(AcosxAxsinx+Bsinx+Bxcosx)(xsinx+9cosx)(Ax2cos2x8Axsinxcosx+Bxsinxcosx8Bsin2x)(A \cos x - Ax \sin x + B \sin x + Bx \cos x)(x \sin x + 9 \cos x) - (Ax^2 \cos^2 x - 8Ax \sin x \cos x + Bx \sin x \cos x - 8B \sin^2 x)
Axsinxcosx+9Acos2xAx2sin2x9Axsinxcosx+Bxsin2x+9Bsinxcosx+Bx2sinxcosx+9Bxcos2xAx2cos2x+8AxsinxcosxBxsinxcosx+8Bsin2xAx \sin x \cos x + 9A \cos^2 x - Ax^2 \sin^2 x - 9Ax \sin x \cos x + Bx \sin^2 x + 9B \sin x \cos x + Bx^2 \sin x \cos x + 9Bx \cos^2 x - Ax^2 \cos^2 x + 8Ax \sin x \cos x - Bx \sin x \cos x + 8B \sin^2 x
Grouping the terms,
Axsinxcosx9Axsinxcosx+8Axsinxcosx=0Ax \sin x \cos x - 9Ax \sin x \cos x + 8Ax \sin x \cos x = 0.
9Acos2x+Bxsin2x+9Bsinxcosx+9Bxcos2x+8Bsin2xAx2sin2xAx2cos2x9A \cos^2 x + Bx \sin^2 x + 9B \sin x \cos x + 9Bx \cos^2 x + 8B \sin^2 x - Ax^2 \sin^2 x - Ax^2 \cos^2 x
9Acos2x+9Bsinxcosx+8Bsin2x+Bx(sin2x+xcos2x)Ax2(sin2x+cos2x)9A \cos^2 x + 9B \sin x \cos x + 8B \sin^2 x + Bx(\sin^2 x + x \cos^2 x) - Ax^2 (\sin^2 x + \cos^2 x)
We need to evaluate x2+72(xsinx+9cosx)2dx=xcosx+9sinxxsinx+9cosx+C\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = \frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} + C.
d/dx(xcosx+9sinxxsinx+9cosx)=(xsinx+9cosx)(cosx+xsinx+9cosx)(xcosx+9sinx)(xcosx9sinx)(xsinx+9cosx)2d/dx(\frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x}) = \frac{(x \sin x + 9 \cos x)(- \cos x + x \sin x + 9 \cos x) - (-x \cos x + 9 \sin x)(x \cos x - 9 \sin x)}{(x \sin x + 9 \cos x)^2}.
Numerator: (xsinxcosx+x2sin2x9xsinxcosx+9cos2x+xsinx81cos2x)(x2cos2x+9xsinxcosx+9xsinxcosx81sin2x)(-x \sin x \cos x + x^2 \sin^2 x -9x \sin x \cos x +9 \cos^2 x +x \sin x -81 \cos^2 x) - (-x^2 \cos^2 x +9x \sin x \cos x + 9x \sin x \cos x - 81 \sin^2 x)
=9xsinxcosx+x2sin2x+81cos2x=9xsinxcosxx2cos2x9x+81sin2x = 9x \sin x \cos x + x^2 \sin^2 x + 81\cos^2 x = 9x \sin x \cos x - x^2 \cos^2 x -9x + 81 \sin^2 x
xcosx+9sinxxsinx+9cosx+C\frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} + C

3. Final Answer

xcosx+9sinxxsinx+9cosx+C\frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} + C

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1