We will use integration by parts to solve the integral. Let's first rewrite the numerator as follows:
x2+72=x2+81−9=(x2+81)−9. Then we can rewrite the integral as
∫(xsinx+9cosx)2x2+72dx=∫(xsinx+9cosx)2x2+81−9dx. Let u=xsinx+9cosx. Then the derivative of u with respect to x is: dxdu=sinx+xcosx−9sinx=xcosx−8sinx. Now, let's rewrite the integral in terms of sinx and cosx. We can write the numerator as x2+72=x2+92−9. Let's try to manipulate the integral into the form ∫[f(x)]2f′(x)dx. If f(x)=xsinx+9cosx, then f′(x)=xcosx−8sinx. Now let us consider (xsinx+9cosx)Axcosx+Bsinx. Its derivative is: (xsinx+9cosx)2(Acosx−Axsinx+Bcosx)(xsinx+9cosx)−(Axcosx+Bsinx)(xcosx−8sinx). Let us assume the integral is of the form xsinx+9cosxAxcosx+Bsinx. Then differentiating it, we get (xsinx+9cosx)2(xsinx+9cosx)(Acosx−Axsinx+Bsinx+Bxcosx)−(Axcosx+Bsinx)(xcosx−8sinx). The numerator is
(Acosx−Axsinx+Bsinx+Bxcosx)(xsinx+9cosx)−(Ax2cos2x−8Axsinxcosx+Bxsinxcosx−8Bsin2x) Axsinxcosx+9Acos2x−Ax2sin2x−9Axsinxcosx+Bxsin2x+9Bsinxcosx+Bx2sinxcosx+9Bxcos2x−Ax2cos2x+8Axsinxcosx−Bxsinxcosx+8Bsin2x Grouping the terms,
Axsinxcosx−9Axsinxcosx+8Axsinxcosx=0. 9Acos2x+Bxsin2x+9Bsinxcosx+9Bxcos2x+8Bsin2x−Ax2sin2x−Ax2cos2x 9Acos2x+9Bsinxcosx+8Bsin2x+Bx(sin2x+xcos2x)−Ax2(sin2x+cos2x) We need to evaluate ∫(xsinx+9cosx)2x2+72dx=xsinx+9cosx−xcosx+9sinx+C. d/dx(xsinx+9cosx−xcosx+9sinx)=(xsinx+9cosx)2(xsinx+9cosx)(−cosx+xsinx+9cosx)−(−xcosx+9sinx)(xcosx−9sinx). Numerator: (−xsinxcosx+x2sin2x−9xsinxcosx+9cos2x+xsinx−81cos2x)−(−x2cos2x+9xsinxcosx+9xsinxcosx−81sin2x) =9xsinxcosx+x2sin2x+81cos2x=9xsinxcosx−x2cos2x−9x+81sin2x xsinx+9cosx−xcosx+9sinx+C