We need to evaluate the integral:
∫(5x4−3x2+23x)dx We can break the integral into three separate integrals:
∫5x4dx−∫3x2dx+∫23xdx We can pull the constants out of the integrals:
5∫x4dx−3∫x2dx+23∫xdx Recall the power rule for integration:
∫xndx=n+1xn+1+C Applying the power rule to each term:
5∫x4dx=5⋅4+1x4+1=5⋅5x5=x5 −3∫x2dx=−3⋅2+1x2+1=−3⋅3x3=−x3 23∫xdx=23∫x21dx=23⋅21+1x21+1=23⋅23x23=23⋅32x23=x23 Putting it all together:
x5−x3+x23+C