We will integrate each term separately.
∫(5x4−3x2+23x)dx=∫5x4dx−∫3x2dx+∫23xdx We can rewrite x as x21. ∫5x4dx=5∫x4dx ∫3x2dx=3∫x2dx ∫23xdx=23∫x21dx Using the power rule for integration, we have
∫xndx=n+1xn+1+C for n=−1. Therefore,
∫x4dx=4+1x4+1+C=5x5+C ∫x2dx=2+1x2+1+C=3x3+C ∫x21dx=21+1x21+1+C=23x23+C=32x23+C Now, we substitute these results back into the original expression:
5∫x4dx−3∫x2dx+23∫x21dx=5(5x5)−3(3x3)+23(32x23)+C Simplifying the expression, we have:
x5−x3+x23+C=x5−x3+xx+C