The problem asks us to evaluate the definite integral $\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx$.

AnalysisIntegrationDefinite IntegralPower Rule
2025/3/17

1. Problem Description

The problem asks us to evaluate the definite integral (5x43x2+3x2)dx\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx.

2. Solution Steps

We can integrate each term separately using the power rule for integration. The power rule states that:
xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, where n1n \ne -1.
First, consider the term 5x45x^4. Using the power rule, we get
5x4dx=5x4dx=5x4+14+1+C1=5x55+C1=x5+C1\int 5x^4 dx = 5 \int x^4 dx = 5 \cdot \frac{x^{4+1}}{4+1} + C_1 = 5 \cdot \frac{x^5}{5} + C_1 = x^5 + C_1.
Next, consider the term 3x2-3x^2. Using the power rule, we get
3x2dx=3x2dx=3x2+12+1+C2=3x33+C2=x3+C2\int -3x^2 dx = -3 \int x^2 dx = -3 \cdot \frac{x^{2+1}}{2+1} + C_2 = -3 \cdot \frac{x^3}{3} + C_2 = -x^3 + C_2.
Finally, consider the term 3x2\frac{3\sqrt{x}}{2}. We can rewrite x\sqrt{x} as x1/2x^{1/2}. Then we have
3x2dx=32x1/2dx=32x(1/2)+1(1/2)+1+C3=32x3/23/2+C3=3223x3/2+C3=x3/2+C3\int \frac{3\sqrt{x}}{2} dx = \frac{3}{2} \int x^{1/2} dx = \frac{3}{2} \cdot \frac{x^{(1/2)+1}}{(1/2)+1} + C_3 = \frac{3}{2} \cdot \frac{x^{3/2}}{3/2} + C_3 = \frac{3}{2} \cdot \frac{2}{3} x^{3/2} + C_3 = x^{3/2} + C_3.
Adding all the integrated terms together, we have
(5x43x2+3x2)dx=x5x3+x3/2+C\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx = x^5 - x^3 + x^{3/2} + C, where C=C1+C2+C3C = C_1 + C_2 + C_3.

3. Final Answer

x5x3+x3/2+Cx^5 - x^3 + x^{3/2} + C

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1