与えられた方程式 $3(x-2) = 2(x-4)$ を解いて、$x$ の値を求めます。

代数学一次方程式方程式の解法代数
2025/4/24

1. 問題の内容

与えられた方程式 3(x2)=2(x4)3(x-2) = 2(x-4) を解いて、xx の値を求めます。

2. 解き方の手順

まず、方程式の両辺を展開します。
3(x2)=3x63(x-2) = 3x - 6
2(x4)=2x82(x-4) = 2x - 8
したがって、方程式は次のようになります。
3x6=2x83x - 6 = 2x - 8
次に、xx の項を左辺に、定数項を右辺に移行します。
3x2x=8+63x - 2x = -8 + 6
x=2x = -2

3. 最終的な答え

x=2x = -2

「代数学」の関連問題

現在、母親は53歳、子供は27歳です。母親の年齢が子供の年齢の3倍だったのは何年前でしょうか?

方程式文章問題一次方程式
2025/4/24

$a, b$ は実数であるとき、3次方程式 $x^3 + ax^2 + bx + 5 = 0$ が $2+i$ を解に持つ。定数 $a, b$ の値と、他の解を求めよ。

三次方程式複素数解と係数の関係
2025/4/24

$x^2 - 9 < 0$ を満たすすべての $x$ が、$x^2 - 2kx + k^2 - 16 < 0$ を満たすとき、$k$ の値の範囲を求める問題です。

不等式二次不等式解の範囲絶対値
2025/4/24

整式 $6x^4 + 5x^3 - 7x^2 + 2x - 1$ を以下の整式で割ったときの商と余りを求める問題です。 (1) $x+1$ (2) $x^2+2x+1$ (3) $2x^3+1$

多項式割り算因数分解組み立て除法
2025/4/24

次の方程式を解きます。 (1) $8x^3 - 1 = 0$ (2) $2x^4 + x^2 - 6 = 0$ (3) $x(x+1)(x+2) = 2 \cdot 3 \cdot 4$ (4) $(...

方程式因数分解三次方程式四次方程式解の公式複素数
2025/4/24

写真に写っている数学の問題は次の2つです。 (3) $x+1[x+2]-2\cdot3\cdot4$ (4) $[(x^2-x)^2 - 8(x^2-x)]+12 = 0$

二次方程式因数分解式の展開
2025/4/24

複素数 $\alpha$, $\beta$ についての等式 $\frac{1}{\alpha} + \frac{1}{\beta} = \overline{\alpha} + \overline{\b...

複素数複素平面絶対値極形式
2025/4/24

次の複素数の計算問題を解きます。 (1) $(1+\sqrt{-2})(3-\sqrt{-8})$ (2) $(1-i)^3$ (3) $\frac{1}{1+i} + \frac{1}{1-2i}$

複素数複素数の計算
2025/4/24

問題は、以下の2つの部分から構成されています。 (1) $x = -1 + \sqrt{2}i$ のとき、$x^2 + 2x + 3 = 0$ であることを示しなさい。 (2) (1)の結果を用いて、...

複素数多項式式の計算代入
2025/4/24

与えられた式 $x^2 + (2y - 1)x + y(y - 1)$ を因数分解する問題です。

因数分解二次式多項式
2025/4/24