次の複素数の計算問題を解きます。 (1) $(1+\sqrt{-2})(3-\sqrt{-8})$ (2) $(1-i)^3$ (3) $\frac{1}{1+i} + \frac{1}{1-2i}$代数学複素数複素数の計算2025/4/241. 問題の内容次の複素数の計算問題を解きます。(1) (1+−2)(3−−8)(1+\sqrt{-2})(3-\sqrt{-8})(1+−2)(3−−8)(2) (1−i)3(1-i)^3(1−i)3(3) 11+i+11−2i\frac{1}{1+i} + \frac{1}{1-2i}1+i1+1−2i12. 解き方の手順(1) (1+−2)(3−−8)(1+\sqrt{-2})(3-\sqrt{-8})(1+−2)(3−−8)−2=2i\sqrt{-2} = \sqrt{2}i−2=2i, −8=8i=22i\sqrt{-8} = \sqrt{8}i = 2\sqrt{2}i−8=8i=22iしたがって、(1+2i)(3−22i)=3−22i+32i−4i2=3+2i+4=7+2i(1+\sqrt{2}i)(3-2\sqrt{2}i) = 3 - 2\sqrt{2}i + 3\sqrt{2}i - 4i^2 = 3 + \sqrt{2}i + 4 = 7 + \sqrt{2}i(1+2i)(3−22i)=3−22i+32i−4i2=3+2i+4=7+2i(2) (1−i)3(1-i)^3(1−i)3(1−i)2=1−2i+i2=1−2i−1=−2i(1-i)^2 = 1 - 2i + i^2 = 1 - 2i - 1 = -2i(1−i)2=1−2i+i2=1−2i−1=−2i(1−i)3=(1−i)2(1−i)=−2i(1−i)=−2i+2i2=−2i−2=−2−2i(1-i)^3 = (1-i)^2(1-i) = -2i(1-i) = -2i + 2i^2 = -2i - 2 = -2 - 2i(1−i)3=(1−i)2(1−i)=−2i(1−i)=−2i+2i2=−2i−2=−2−2i(3) 11+i+11−2i\frac{1}{1+i} + \frac{1}{1-2i}1+i1+1−2i111+i=1−i(1+i)(1−i)=1−i1−i2=1−i1−(−1)=1−i2\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{1 - i^2} = \frac{1-i}{1-(-1)} = \frac{1-i}{2}1+i1=(1+i)(1−i)1−i=1−i21−i=1−(−1)1−i=21−i11−2i=1+2i(1−2i)(1+2i)=1+2i1−(2i)2=1+2i1−4i2=1+2i1+4=1+2i5\frac{1}{1-2i} = \frac{1+2i}{(1-2i)(1+2i)} = \frac{1+2i}{1 - (2i)^2} = \frac{1+2i}{1 - 4i^2} = \frac{1+2i}{1+4} = \frac{1+2i}{5}1−2i1=(1−2i)(1+2i)1+2i=1−(2i)21+2i=1−4i21+2i=1+41+2i=51+2iしたがって、11+i+11−2i=1−i2+1+2i5=5(1−i)+2(1+2i)10=5−5i+2+4i10=7−i10=710−110i\frac{1}{1+i} + \frac{1}{1-2i} = \frac{1-i}{2} + \frac{1+2i}{5} = \frac{5(1-i) + 2(1+2i)}{10} = \frac{5 - 5i + 2 + 4i}{10} = \frac{7 - i}{10} = \frac{7}{10} - \frac{1}{10}i1+i1+1−2i1=21−i+51+2i=105(1−i)+2(1+2i)=105−5i+2+4i=107−i=107−101i3. 最終的な答え(1) 7+2i7 + \sqrt{2}i7+2i(2) −2−2i-2 - 2i−2−2i(3) 710−110i\frac{7}{10} - \frac{1}{10}i107−101i