与えられた式 $(45a^2 - 18ab) \div 9a$ を簡略化します。

代数学式の簡略化因数分解多項式
2025/4/24

1. 問題の内容

与えられた式 (45a218ab)÷9a(45a^2 - 18ab) \div 9a を簡略化します。

2. 解き方の手順

まず、式を分数で表します。
45a218ab9a\frac{45a^2 - 18ab}{9a}
次に、分子の各項を分母で割ります。
45a29a18ab9a\frac{45a^2}{9a} - \frac{18ab}{9a}
各項を簡略化します。
459a2a189aba\frac{45}{9} \cdot \frac{a^2}{a} - \frac{18}{9} \cdot \frac{ab}{a}
459=5\frac{45}{9} = 5 であり、 189=2\frac{18}{9} = 2 です。また、a2/a=aa^2/a = a であり、ab/a=bab/a = b です。
したがって、
5a2b5a - 2b

3. 最終的な答え

5a2b5a - 2b

「代数学」の関連問題

与えられた連立一次方程式を解く問題です。 $\begin{cases} -4x + 7y = 1 \\ 6x - 5y = 15 \end{cases}$

連立一次方程式加減法方程式
2025/4/24

$a$ が与えられた値をとるとき、$|a+4| - |a-3|$ の値を求めます。

絶対値式の計算
2025/4/24

2つの数$a$と$b$の間に、$a \bigcirc b = a + b - \frac{b}{a}$ という演算を定義する。$2 \bigcirc x = 3$となるような$x$の値を求めよ。

演算方程式代入
2025/4/24

与えられた不等式 $m^2 - m + 2 < 0$ を満たす $m$ の範囲を求めます。

二次不等式判別式2次関数解なし
2025/4/24

$x = 4 + \sqrt{2}$, $y = 4 - \sqrt{2}$ のとき、$\frac{y}{x} + \frac{x}{y}$ の値を求める。

式の計算有理化平方根展開
2025/4/24

次の連立不等式を解く問題です。 $\begin{cases} 8x - 1 \leq 5x - 7 \\ -x - 3 > 3x + 1 \end{cases}$

連立不等式不等式
2025/4/24

与えられた二次式 $5x^2 + 7x + 2$ を因数分解する。

因数分解二次式たすき掛け
2025/4/24

次の2つの1次不等式を解きます。 (1) $10 - 3(x+1) > x - 1$ (2) $\frac{7x+1}{3} < \frac{3x-6}{2}$

一次不等式不等式計算
2025/4/24

3つの解 $3, 1+i, 1-i$ を持つ3次方程式を1つ求める問題です。与えられた3つの解を元に、3次方程式 $ax^3 + bx^2 + cx + d = 0$ の係数 $a, b, c, d$...

3次方程式解の公式因数定理複素数
2025/4/24

$x=4+\sqrt{2}$, $y=4-\sqrt{2}$ のとき、$x^2+y^2$ の値を求める。

式の計算展開平方根数値計算
2025/4/24