$x = 4 + \sqrt{2}$, $y = 4 - \sqrt{2}$ のとき、$\frac{y}{x} + \frac{x}{y}$ の値を求める。代数学式の計算有理化平方根展開2025/4/241. 問題の内容x=4+2x = 4 + \sqrt{2}x=4+2, y=4−2y = 4 - \sqrt{2}y=4−2 のとき、yx+xy\frac{y}{x} + \frac{x}{y}xy+yx の値を求める。2. 解き方の手順まず、与えられた式を整理する。yx+xy=y2+x2xy\frac{y}{x} + \frac{x}{y} = \frac{y^2 + x^2}{xy}xy+yx=xyy2+x2次に、x2x^2x2, y2y^2y2, xyxyxy をそれぞれ計算する。x2=(4+2)2=42+2⋅4⋅2+(2)2=16+82+2=18+82x^2 = (4 + \sqrt{2})^2 = 4^2 + 2 \cdot 4 \cdot \sqrt{2} + (\sqrt{2})^2 = 16 + 8\sqrt{2} + 2 = 18 + 8\sqrt{2}x2=(4+2)2=42+2⋅4⋅2+(2)2=16+82+2=18+82y2=(4−2)2=42−2⋅4⋅2+(2)2=16−82+2=18−82y^2 = (4 - \sqrt{2})^2 = 4^2 - 2 \cdot 4 \cdot \sqrt{2} + (\sqrt{2})^2 = 16 - 8\sqrt{2} + 2 = 18 - 8\sqrt{2}y2=(4−2)2=42−2⋅4⋅2+(2)2=16−82+2=18−82xy=(4+2)(4−2)=42−(2)2=16−2=14xy = (4 + \sqrt{2})(4 - \sqrt{2}) = 4^2 - (\sqrt{2})^2 = 16 - 2 = 14xy=(4+2)(4−2)=42−(2)2=16−2=14したがって、y2+x2=(18−82)+(18+82)=36y^2 + x^2 = (18 - 8\sqrt{2}) + (18 + 8\sqrt{2}) = 36y2+x2=(18−82)+(18+82)=36yx+xy=3614=187\frac{y}{x} + \frac{x}{y} = \frac{36}{14} = \frac{18}{7}xy+yx=1436=7183. 最終的な答え187\frac{18}{7}718