与えられた積分を計算する問題です。 $\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx$

解析学積分不定積分多項式ルート積分計算
2025/3/17

1. 問題の内容

与えられた積分を計算する問題です。
(5x43x2+3x2)dx\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx

2. 解き方の手順

まず、積分をそれぞれの項に分けます。
5x4dx3x2dx+3x2dx\int 5x^4 dx - \int 3x^2 dx + \int \frac{3\sqrt{x}}{2} dx
次に、それぞれの積分を計算します。
5x4dx=5x4dx=5x55=x5\int 5x^4 dx = 5 \int x^4 dx = 5 \cdot \frac{x^5}{5} = x^5
3x2dx=3x2dx=3x33=x3\int 3x^2 dx = 3 \int x^2 dx = 3 \cdot \frac{x^3}{3} = x^3
3x2dx=32x12dx=32x3232=3223x32=x32\int \frac{3\sqrt{x}}{2} dx = \frac{3}{2} \int x^{\frac{1}{2}} dx = \frac{3}{2} \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{3}{2} \cdot \frac{2}{3} x^{\frac{3}{2}} = x^{\frac{3}{2}}
したがって、
(5x43x2+3x2)dx=x5x3+x32+C\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx = x^5 - x^3 + x^{\frac{3}{2}} + C

3. 最終的な答え

x5x3+x32+Cx^5 - x^3 + x^{\frac{3}{2}} + C

「解析学」の関連問題

与えられた関数を微分する問題です。ただし、$x > 0$ とします。 (1) $y = (x-1)\sqrt{x}$ (2) $y = \frac{\sqrt{x}}{x+2}$

微分関数の微分積の微分商の微分
2025/5/14

与えられた関数 $y = \frac{\log x - 1}{x}$ の導関数を求める。

導関数微分対数関数商の微分公式
2025/5/14

関数 $y = (\log x + 1) \log x$ の導関数 $y'$ を求める問題です。

導関数対数関数微分積の微分
2025/5/14

$\lim_{x \to 0} \frac{\sin 3x - \sin x}{x}$ を計算する問題です。

極限三角関数公式の適用
2025/5/14

与えられた関数を微分する問題です。 (1) $y = (x^2 + x)(e^{3x} + 1)$ (2) $y = (e^x + 2)(e^{2x} - 1)$

微分積の微分指数関数
2025/5/14

問題は、与えられた関数を微分することです。 (1) $(3x^2+5x+1)e^{3x^2+2x+1}$ を $x$ について微分する。 (2) $3e^{3x}+4e^{2x}-e^{x}$ を $...

微分指数関数積の微分合成関数の微分
2025/5/14

与えられた関数を微分する問題です。関数の形は、積の形、商の形、合成関数の形など様々です。公式3.1~3.4、4.7を用いることが指示されています。

微分合成関数積の微分商の微分
2025/5/14

与えられた8つの関数について、微分を計算する問題です。 (1) $y = (3x-1)e^{2x}$ (2) $y = e^{-x}(e^{4x}+1)$ (3) $y = \frac{e^{-x}+...

微分導関数指数関数合成関数積の微分商の微分
2025/5/14

与えられた5つの関数を微分する問題です。 (1) $y = (3x-1)e^{2x}$ (2) $y = e^{-x}(e^{4x}+1)$ (3) $y = \frac{e^{-x}+1}{x}$ ...

微分指数関数積の微分商の微分合成関数の微分
2025/5/14

与えられた関数 $y$ を微分せよ。 (1) $y = e^{2x}e^{4x}$ (2) $y = \frac{1}{e^{3x}}$ (3) $y = \frac{e^{x}}{e^{5x}}$ ...

微分指数関数合成関数
2025/5/14