2変数関数 $f(x,y) = e^{x+2y}$ を、点 $(0,0)$ の周りで2次の項までテイラー展開せよ。解析学テイラー展開偏微分多変数関数2025/4/261. 問題の内容2変数関数 f(x,y)=ex+2yf(x,y) = e^{x+2y}f(x,y)=ex+2y を、点 (0,0)(0,0)(0,0) の周りで2次の項までテイラー展開せよ。2. 解き方の手順テイラー展開の公式は次のとおりです。f(x,y)≈f(0,0)+fx(0,0)x+fy(0,0)y+12fxx(0,0)x2+fxy(0,0)xy+12fyy(0,0)y2f(x,y) \approx f(0,0) + f_x(0,0)x + f_y(0,0)y + \frac{1}{2}f_{xx}(0,0)x^2 + f_{xy}(0,0)xy + \frac{1}{2}f_{yy}(0,0)y^2f(x,y)≈f(0,0)+fx(0,0)x+fy(0,0)y+21fxx(0,0)x2+fxy(0,0)xy+21fyy(0,0)y2ここで、fxf_xfx は xxx に関する偏微分、fyf_yfy は yyy に関する偏微分、fxxf_{xx}fxx は xxx に関する2階偏微分、fyyf_{yy}fyy は yyy に関する2階偏微分、fxyf_{xy}fxy は xxx と yyy に関する2階偏微分です。まず、関数 f(x,y)f(x,y)f(x,y) の偏微分を計算します。f(x,y)=ex+2yf(x,y) = e^{x+2y}f(x,y)=ex+2yfx(x,y)=ex+2yf_x(x,y) = e^{x+2y}fx(x,y)=ex+2yfy(x,y)=2ex+2yf_y(x,y) = 2e^{x+2y}fy(x,y)=2ex+2yfxx(x,y)=ex+2yf_{xx}(x,y) = e^{x+2y}fxx(x,y)=ex+2yfxy(x,y)=2ex+2yf_{xy}(x,y) = 2e^{x+2y}fxy(x,y)=2ex+2yfyy(x,y)=4ex+2yf_{yy}(x,y) = 4e^{x+2y}fyy(x,y)=4ex+2y次に、これらの偏微分を点 (0,0)(0,0)(0,0) で評価します。f(0,0)=e0+2(0)=e0=1f(0,0) = e^{0+2(0)} = e^0 = 1f(0,0)=e0+2(0)=e0=1fx(0,0)=e0+2(0)=e0=1f_x(0,0) = e^{0+2(0)} = e^0 = 1fx(0,0)=e0+2(0)=e0=1fy(0,0)=2e0+2(0)=2e0=2f_y(0,0) = 2e^{0+2(0)} = 2e^0 = 2fy(0,0)=2e0+2(0)=2e0=2fxx(0,0)=e0+2(0)=e0=1f_{xx}(0,0) = e^{0+2(0)} = e^0 = 1fxx(0,0)=e0+2(0)=e0=1fxy(0,0)=2e0+2(0)=2e0=2f_{xy}(0,0) = 2e^{0+2(0)} = 2e^0 = 2fxy(0,0)=2e0+2(0)=2e0=2fyy(0,0)=4e0+2(0)=4e0=4f_{yy}(0,0) = 4e^{0+2(0)} = 4e^0 = 4fyy(0,0)=4e0+2(0)=4e0=4これらの値をテイラー展開の公式に代入します。f(x,y)≈1+1x+2y+12(1)x2+2xy+12(4)y2f(x,y) \approx 1 + 1x + 2y + \frac{1}{2}(1)x^2 + 2xy + \frac{1}{2}(4)y^2f(x,y)≈1+1x+2y+21(1)x2+2xy+21(4)y2f(x,y)≈1+x+2y+12x2+2xy+2y2f(x,y) \approx 1 + x + 2y + \frac{1}{2}x^2 + 2xy + 2y^2f(x,y)≈1+x+2y+21x2+2xy+2y23. 最終的な答え1+x+2y+12x2+2xy+2y21 + x + 2y + \frac{1}{2}x^2 + 2xy + 2y^21+x+2y+21x2+2xy+2y2