空欄を埋める問題です。 $\square \times \frac{1}{5}x^3y^2 \div (-\frac{2}{5}x^4y^3)^2 = \frac{15}{2x^5y^4}$ 上記の式の空欄に当てはまる式を求めます。代数学式の計算分数式指数法則2025/4/271. 問題の内容空欄を埋める問題です。□×15x3y2÷(−25x4y3)2=152x5y4\square \times \frac{1}{5}x^3y^2 \div (-\frac{2}{5}x^4y^3)^2 = \frac{15}{2x^5y^4}□×51x3y2÷(−52x4y3)2=2x5y415上記の式の空欄に当てはまる式を求めます。2. 解き方の手順まず、式を整理します。□×15x3y2÷(425x8y6)=152x5y4\square \times \frac{1}{5}x^3y^2 \div (\frac{4}{25}x^8y^6) = \frac{15}{2x^5y^4}□×51x3y2÷(254x8y6)=2x5y415□×15x3y2×254x8y6=152x5y4\square \times \frac{1}{5}x^3y^2 \times \frac{25}{4x^8y^6} = \frac{15}{2x^5y^4}□×51x3y2×4x8y625=2x5y415□×5x3y24x8y6=152x5y4\square \times \frac{5x^3y^2}{4x^8y^6} = \frac{15}{2x^5y^4}□×4x8y65x3y2=2x5y415□×54x5y4=152x5y4\square \times \frac{5}{4x^5y^4} = \frac{15}{2x^5y^4}□×4x5y45=2x5y415次に、空欄を求めるために、両辺に4x5y45\frac{4x^5y^4}{5}54x5y4をかけます。□=152x5y4×4x5y45\square = \frac{15}{2x^5y^4} \times \frac{4x^5y^4}{5}□=2x5y415×54x5y4□=15×42×5\square = \frac{15 \times 4}{2 \times 5}□=2×515×4□=6010\square = \frac{60}{10}□=1060□=6\square = 6□=63. 最終的な答え666