次の3つの式を展開せよ。 (1) $(x-2y+1)(x-2y-2)$ (2) $(a+b+c)^2$ (3) $(x^2+x-1)(x^2-x+1)$代数学式の展開多項式因数分解置換2025/4/27## 問題の回答1. 問題の内容次の3つの式を展開せよ。(1) (x−2y+1)(x−2y−2)(x-2y+1)(x-2y-2)(x−2y+1)(x−2y−2)(2) (a+b+c)2(a+b+c)^2(a+b+c)2(3) (x2+x−1)(x2−x+1)(x^2+x-1)(x^2-x+1)(x2+x−1)(x2−x+1)2. 解き方の手順(1) (x−2y+1)(x−2y−2)(x-2y+1)(x-2y-2)(x−2y+1)(x−2y−2) の展開x−2y=Ax-2y = Ax−2y=A と置換すると、(A+1)(A−2)=A2−A−2(A+1)(A-2) = A^2 - A - 2(A+1)(A−2)=A2−A−2ここで AAA を元に戻すと、(x−2y)2−(x−2y)−2=x2−4xy+4y2−x+2y−2(x-2y)^2 - (x-2y) - 2 = x^2 - 4xy + 4y^2 - x + 2y - 2(x−2y)2−(x−2y)−2=x2−4xy+4y2−x+2y−2(2) (a+b+c)2(a+b+c)^2(a+b+c)2 の展開(a+b+c)2=(a+b+c)(a+b+c)=a(a+b+c)+b(a+b+c)+c(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2bc+2ca(a+b+c)^2 = (a+b+c)(a+b+c) = a(a+b+c) + b(a+b+c) + c(a+b+c) = a^2 + ab + ac + ba + b^2 + bc + ca + cb + c^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca(a+b+c)2=(a+b+c)(a+b+c)=a(a+b+c)+b(a+b+c)+c(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2bc+2ca(3) (x2+x−1)(x2−x+1)(x^2+x-1)(x^2-x+1)(x2+x−1)(x2−x+1) の展開x2+1=Ax^2+1 = Ax2+1=A と置換すると、(A+x)(A−x)=A2−x2(A+x)(A-x) = A^2 - x^2(A+x)(A−x)=A2−x2ここで AAA を元に戻すと、(x2+1)2−x2=x4+2x2+1−x2=x4+x2+1(x^2+1)^2 - x^2 = x^4 + 2x^2 + 1 - x^2 = x^4 + x^2 + 1(x2+1)2−x2=x4+2x2+1−x2=x4+x2+13. 最終的な答え(1) x2−4xy+4y2−x+2y−2x^2 - 4xy + 4y^2 - x + 2y - 2x2−4xy+4y2−x+2y−2(2) a2+b2+c2+2ab+2bc+2caa^2 + b^2 + c^2 + 2ab + 2bc + 2caa2+b2+c2+2ab+2bc+2ca(3) x4+x2+1x^4 + x^2 + 1x4+x2+1