与えられた式を因数分解します。 (1) $x^2 + (2y-1)x + y(y-1)$

代数学因数分解多項式二次式
2025/4/27

1. 問題の内容

与えられた式を因数分解します。
(1) x2+(2y1)x+y(y1)x^2 + (2y-1)x + y(y-1)

2. 解き方の手順

与えられた式を因数分解するために、まず定数項 y(y1)y(y-1) に注目します。
y(y1)=y(y1)y(y-1) = y(y-1) であることに注意します。
次に、yyy1y-1 の和が 2y12y-1 になっていることを確認します。
したがって、x2+(2y1)x+y(y1)x^2 + (2y-1)x + y(y-1)(x+y)(x+y1)(x+y)(x+y-1) と因数分解できます。

3. 最終的な答え

(x+y)(x+y1)(x+y)(x+y-1)

「代数学」の関連問題

与えられた単項式について、次数と係数を求める問題です。具体的には、以下の4つの単項式について、それぞれ次数と係数を求めます。 (1) $2abc$ (2) $-7x$ (3) $x^3y^2$ (4)...

単項式次数係数
2025/4/28

与えられた連立方程式を解く問題です。 $a + b + c = 4$ $-a - 2b - 2c = 3$ また、$b-c=5$という条件も与えられています。

連立方程式線形代数方程式の解法
2025/4/28

与えられた整式を、$x$について降べきの順に整理し、$x$について何次式であるかを答える問題です。 (1) $x^2 + 2ax^3 + 5 - 3ax$ (2) $x^2 + y^2 + xy + ...

整式降べきの順次数
2025/4/28

$70 \times \frac{1}{2 - \sqrt{3}}$ の整数の部分を $a$, 小数の部分を $b$ とするとき、$a, b$ の値を求めよ。

有理化平方根数の計算整数の部分小数の部分
2025/4/28

$70 \times \frac{1}{2-\sqrt{3}}$ の整数の部分を $a$, 小数の部分を $b$ とするとき,$a$ と $b$ の値を求めよ。

式の計算有理化平方根近似値
2025/4/28

与えられた二次方程式 $x^2 - 7x - 60 = 0$ を解いて、$x$ の値を求めます。

二次方程式因数分解解の公式
2025/4/28

$a \neq 0$ を満たす実数 $a$ を定数とする。連立方程式 $ \begin{cases} y = ax(1-x) \\ x = ay(1-y) \end{cases} $ が $x \ne...

連立方程式二次方程式判別式不等式
2025/4/28

$x^2 - 4x + 1 = 0$のとき、$x^3 + \frac{1}{x^3}$と$x^5 + \frac{1}{x^5}$の値を求める。

二次方程式解と係数の関係複素数多項式
2025/4/28

$x = \frac{\sqrt{6} + \sqrt{2}}{2}$ のとき、以下の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ ...

式の計算有理化展開対称式
2025/4/28

$x - 4 + \frac{1}{x} = 0$ よって、 $x + \frac{1}{x} = 4$

二次方程式三次方程式解の公式複素数代数方程式
2025/4/28