$x = \frac{\sqrt{6} + \sqrt{2}}{2}$ のとき、以下の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ (3) $x^3 + \frac{1}{x^3}$

代数学式の計算有理化展開対称式
2025/4/28

1. 問題の内容

x=6+22x = \frac{\sqrt{6} + \sqrt{2}}{2} のとき、以下の式の値を求めよ。
(1) x+1xx + \frac{1}{x}
(2) x2+1x2x^2 + \frac{1}{x^2}
(3) x3+1x3x^3 + \frac{1}{x^3}

2. 解き方の手順

(1) x+1xx + \frac{1}{x} を求める。
まず、1x\frac{1}{x} を計算する。
1x=26+2=2(62)(6+2)(62)=2(62)62=2(62)4=622\frac{1}{x} = \frac{2}{\sqrt{6} + \sqrt{2}} = \frac{2(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} = \frac{2(\sqrt{6} - \sqrt{2})}{6 - 2} = \frac{2(\sqrt{6} - \sqrt{2})}{4} = \frac{\sqrt{6} - \sqrt{2}}{2}
したがって、
x+1x=6+22+622=6+2+622=262=6x + \frac{1}{x} = \frac{\sqrt{6} + \sqrt{2}}{2} + \frac{\sqrt{6} - \sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2} + \sqrt{6} - \sqrt{2}}{2} = \frac{2\sqrt{6}}{2} = \sqrt{6}
(2) x2+1x2x^2 + \frac{1}{x^2} を求める。
(x+1x)2=x2+2+1x2(x + \frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2} より、 x2+1x2=(x+1x)22x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2
(1)より、x+1x=6x + \frac{1}{x} = \sqrt{6} なので、
x2+1x2=(6)22=62=4x^2 + \frac{1}{x^2} = (\sqrt{6})^2 - 2 = 6 - 2 = 4
(3) x3+1x3x^3 + \frac{1}{x^3} を求める。
(x+1x)3=x3+3x21x+3x1x2+1x3=x3+3x+3x+1x3=x3+1x3+3(x+1x)(x + \frac{1}{x})^3 = x^3 + 3x^2\frac{1}{x} + 3x\frac{1}{x^2} + \frac{1}{x^3} = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x})
したがって、x3+1x3=(x+1x)33(x+1x)x^3 + \frac{1}{x^3} = (x + \frac{1}{x})^3 - 3(x + \frac{1}{x})
x+1x=6x + \frac{1}{x} = \sqrt{6} なので、
x3+1x3=(6)336=6636=36x^3 + \frac{1}{x^3} = (\sqrt{6})^3 - 3\sqrt{6} = 6\sqrt{6} - 3\sqrt{6} = 3\sqrt{6}

3. 最終的な答え

(1) x+1x=6x + \frac{1}{x} = \sqrt{6}
(2) x2+1x2=4x^2 + \frac{1}{x^2} = 4
(3) x3+1x3=36x^3 + \frac{1}{x^3} = 3\sqrt{6}

「代数学」の関連問題

$a, b, c$ が0でない実数で、$a+b+c=0$ のとき、$a(\frac{1}{b} + \frac{1}{c}) + b(\frac{1}{c} + \frac{1}{a}) + c(\f...

式の計算因数分解条件付き等式
2025/4/28

与えられた問題は、$\frac{1}{\sqrt{3}+1} - \frac{1}{\sqrt{3}+2}$ を計算することです。

式の計算有理化平方根
2025/4/28

与えられた4つの等式のうち、恒等式であるものを特定します。恒等式とは、変数にどのような値を代入しても常に成り立つ等式のことです。

恒等式式の展開代数
2025/4/28

与えられた連立方程式を解き、$x$と$y$の値を求めます。連立方程式は以下の通りです。 $x + 4y - 5 = -2x + 3y = 3x + 2y + 5$

連立方程式方程式解の公式
2025/4/28

連立方程式 $\begin{cases} ax + by = 8 \\ 2ax - by = -2 \end{cases}$ の解が $(x, y) = (1, 2)$ となるように、定数 $a, b...

連立方程式代入方程式の解
2025/4/28

連立方程式 $ax - y = 3$ $3x + by = 5$ の解が$x=-1$, $y=2$ であるとき、$a$と$b$の値を求める。

連立方程式代入方程式の解
2025/4/28

与えられた連立方程式 $ -x + 2y = x + 5y = 7 $ を解いて、$x$と$y$の値を求める。

連立方程式一次方程式代入法
2025/4/28

次の連立方程式を解く問題です。 $4x + y = 3x - y = 7$

連立方程式一次方程式代入法計算
2025/4/28

以下の連立方程式を解く問題です。 $ \begin{cases} 3x - \frac{5x+2y}{2} = 4 \\ \frac{2x+1}{5} = \frac{y+10}{7} \end{ca...

連立方程式一次方程式代入法
2025/4/28

次の連立方程式を解く問題です。 $\begin{cases} \frac{3}{2}x - \frac{2}{3}y = -5 \\ 0.1x - 0.7y = -2.3 \end{cases}$

連立方程式一次方程式代入法
2025/4/28