与えられた円錐の体積を求めます。円錐の母線の長さは6cm、底面の半径は3cm、高さは$3\sqrt{3}$cmです。

幾何学円錐体積三平方の定理
2025/4/29

1. 問題の内容

与えられた円錐の体積を求めます。円錐の母線の長さは6cm、底面の半径は3cm、高さは333\sqrt{3}cmです。

2. 解き方の手順

円錐の体積 VV は、底面積 AA と高さ hh を用いて、以下の式で求められます。
V=13AhV = \frac{1}{3}Ah
底面は半径 rr の円なので、底面積 AA は、
A=πr2A = \pi r^2
問題文から、底面の半径 r=3r = 3 cm、高さ h=33h = 3\sqrt{3} cmです。
したがって、
A=π×(3)2=9πA = \pi \times (3)^2 = 9\pi (cm2^2)
V=13×9π×33V = \frac{1}{3} \times 9\pi \times 3\sqrt{3}
V=93πV = 9\sqrt{3}\pi (cm3^3)

3. 最終的な答え

93π9\sqrt{3}\pi cm3^3

「幾何学」の関連問題

与えられた数学の問題は、以下の4つの小問から構成されています。 (1) 2点A(3, -1)とB(-2, 4)を結ぶ線分の垂直二等分線の方程式を求める。 (2) 直線 $y = \frac{1}{2}...

線分の垂直二等分線点と直線の距離直線の方程式
2025/4/30

放物線 $y = 2x^2 - 4x + 5$ を、x軸、y軸、原点に関して、それぞれ対称移動して得られる放物線の方程式を求める。

放物線対称移動二次関数
2025/4/29

3点 $A(-1+i)$, $B(1-i)$, $C(-\sqrt{3} - \sqrt{3}i)$ を頂点とする三角形ABCはどのような三角形か。

複素数平面三角形辺の長さ正三角形
2025/4/29

(1) 2点A(-1, 0), B(3, 0) からの距離の比が1:3である点Pの軌跡を求める。 (2) 2点A(4, 0), B(0, -4) と放物線 $y = x^2$ 上の動点Qとでできる$\...

軌跡重心放物線
2025/4/29

$\triangle OAB$ において、$OA = \sqrt{10}, OB = 2, AB = 4$ である。点 $O$ から辺 $AB$ に下ろした垂線を $OH$ とする。$\vec{OA}...

ベクトル三角形内積垂線
2025/4/29

3点A($\alpha$), B($\beta$), C($\gamma$)を頂点とする$\triangle ABC$について、$\gamma=(1-i)\alpha + i\beta$が成り立つとき...

複素数平面三角形角度直角二等辺三角形
2025/4/29

立方体 $ABCD-EFGH$ において、線分 $EC$ と線分 $FC$ のなす角 $\theta$ ($0 \le \theta \le \pi$) を求めます。ただし、$\theta$ は逆三角...

空間図形ベクトル内積角度立方体
2025/4/29

ベクトル $\vec{a} = (2, 1, 0)$ と $\vec{b} = (1, 1, 1)$ が与えられたとき、以下の値を求めよ。ただし、$\vec{a}$ と $\vec{b}$ のなす角を...

ベクトル内積外積角度
2025/4/29

立方体 ABCD-EFGH において、ベクトルを利用して線分 EC と線分 FC のなす角 $\theta$ を求める。ただし、$0 \le \theta \le \pi$ とする。$\theta$ ...

ベクトル空間ベクトル内積角度立方体
2025/4/29

$0 \leq \theta < 2\pi$ のとき、以下の不等式を解きます。 $\tan \theta + \sqrt{3} \leq 0$

三角関数不等式tan角度範囲
2025/4/29