現在、父親は43歳、子供は13歳です。父親の年齢が子供の年齢の3倍になるのは、今から何年後かを求める問題です。

代数学方程式一次方程式年齢算
2025/3/6

1. 問題の内容

現在、父親は43歳、子供は13歳です。父親の年齢が子供の年齢の3倍になるのは、今から何年後かを求める問題です。

2. 解き方の手順

xx年後に父親の年齢が子供の年齢の3倍になるとします。
xx年後の父親の年齢は 43+x43 + x 歳、子供の年齢は 13+x13 + x 歳となります。
したがって、次の方程式が成り立ちます。
43+x=3(13+x)43 + x = 3(13 + x)
この方程式を解きます。
43+x=39+3x43 + x = 39 + 3x
4339=3xx43 - 39 = 3x - x
4=2x4 = 2x
x=42x = \frac{4}{2}
x=2x = 2

3. 最終的な答え

x=2x = 2

「代数学」の関連問題

与えられた行列 $B$ を簡約階数行列に変形し、その階数を求める問題です。 $B = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -2 & 2 & 3 & -3 \\ 1 & ...

線形代数行列階数簡約化
2025/5/31

与えられた行列 $B$ を簡約階数行列に変形し、その階数を求める問題です。行列 $B$ は以下の通りです。 $B = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -2 & 2 ...

線形代数行列簡約階数階数
2025/5/31

与えられた行列 $B$ の階数を求めます。 $B = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -2 & 2 & 3 & -3 \\ 1 & 4 & -4 & -1 \end...

線形代数行列階数簡約化
2025/5/31

与えられた行列 $B$ を行基本変形によって簡約化する問題です。

線形代数行列行基本変形簡約化
2025/5/31

与えられた式 $(x+y)^2 - 7(x+y) + 12$ を因数分解する問題です。

因数分解二次式多項式
2025/5/31

乗法公式を利用して、$(a+b+c)^2$ を展開する。

展開多項式乗法公式
2025/5/31

与えられた2次式 $4x^2 - 12x + 5$ を因数分解せよ。図の枠を埋めることで、たすき掛けを用いた因数分解を行う。

因数分解二次式たすき掛け
2025/5/31

与えられた2つの行列の積を計算する問題です。 行列はそれぞれ、 $ \begin{pmatrix} 2 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} $ と $ \begi...

行列行列の積線形代数
2025/5/31

与えられた2つの行列の積を計算する問題です。 $ \begin{pmatrix} 2 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & ...

行列行列の積線形代数
2025/5/31

与えられた二次式 $3x^2 + 5x + 2$ を因数分解する問題です。

因数分解二次式二次方程式
2025/5/31