The problem asks us to evaluate the definite integral $\int_{0}^{1} \log(x^2 + 1) \, dx$.

AnalysisDefinite IntegralIntegration by PartsLogarithmsTrigonometric FunctionsCalculus
2025/3/18

1. Problem Description

The problem asks us to evaluate the definite integral 01log(x2+1)dx\int_{0}^{1} \log(x^2 + 1) \, dx.

2. Solution Steps

We can solve this integral using integration by parts.
Recall that integration by parts is given by the formula:
udv=uvvdu\int u \, dv = uv - \int v \, du
Let u=log(x2+1)u = \log(x^2 + 1) and dv=dxdv = dx.
Then du=2xx2+1dxdu = \frac{2x}{x^2 + 1} dx and v=xv = x.
Therefore,
01log(x2+1)dx=[xlog(x2+1)]0101x2xx2+1dx\int_{0}^{1} \log(x^2 + 1) \, dx = \left[x \log(x^2 + 1)\right]_{0}^{1} - \int_{0}^{1} x \cdot \frac{2x}{x^2 + 1} \, dx
=[1log(12+1)0log(02+1)]012x2x2+1dx= \left[1 \cdot \log(1^2 + 1) - 0 \cdot \log(0^2 + 1)\right] - \int_{0}^{1} \frac{2x^2}{x^2 + 1} \, dx
=log(2)012x2x2+1dx= \log(2) - \int_{0}^{1} \frac{2x^2}{x^2 + 1} \, dx
Now we need to evaluate 012x2x2+1dx\int_{0}^{1} \frac{2x^2}{x^2 + 1} \, dx.
We can rewrite the integrand as follows:
2x2x2+1=2(x2+1)2x2+1=22x2+1\frac{2x^2}{x^2 + 1} = \frac{2(x^2 + 1) - 2}{x^2 + 1} = 2 - \frac{2}{x^2 + 1}
Thus, 012x2x2+1dx=01(22x2+1)dx\int_{0}^{1} \frac{2x^2}{x^2 + 1} \, dx = \int_{0}^{1} \left(2 - \frac{2}{x^2 + 1}\right) \, dx
=012dx012x2+1dx= \int_{0}^{1} 2 \, dx - \int_{0}^{1} \frac{2}{x^2 + 1} \, dx
=[2x]012[arctan(x)]01= \left[2x\right]_{0}^{1} - 2 \left[\arctan(x)\right]_{0}^{1}
=(2(1)2(0))2(arctan(1)arctan(0))= (2(1) - 2(0)) - 2 (\arctan(1) - \arctan(0))
=22(π40)=2π2= 2 - 2 \left(\frac{\pi}{4} - 0\right) = 2 - \frac{\pi}{2}
Substituting this back into our original expression:
01log(x2+1)dx=log(2)(2π2)\int_{0}^{1} \log(x^2 + 1) \, dx = \log(2) - \left(2 - \frac{\pi}{2}\right)
=log(2)2+π2= \log(2) - 2 + \frac{\pi}{2}
=log(2)+π22= \log(2) + \frac{\pi}{2} - 2

3. Final Answer

log(2)+π22\log(2) + \frac{\pi}{2} - 2

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1