$x = \frac{1}{\sqrt{7} - \sqrt{5}}$, $y = \frac{1}{\sqrt{7} + \sqrt{5}}$ のとき、以下の値を求めよ。 (1) $x + y$ (2) $xy$ (3) $x^2 + y^2$代数学式の計算有理化平方根2025/4/291. 問題の内容x=17−5x = \frac{1}{\sqrt{7} - \sqrt{5}}x=7−51, y=17+5y = \frac{1}{\sqrt{7} + \sqrt{5}}y=7+51 のとき、以下の値を求めよ。(1) x+yx + yx+y(2) xyxyxy(3) x2+y2x^2 + y^2x2+y22. 解き方の手順まず、xxx と yyy をそれぞれ有理化する。x=17−5=7+5(7−5)(7+5)=7+57−5=7+52x = \frac{1}{\sqrt{7} - \sqrt{5}} = \frac{\sqrt{7} + \sqrt{5}}{(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})} = \frac{\sqrt{7} + \sqrt{5}}{7 - 5} = \frac{\sqrt{7} + \sqrt{5}}{2}x=7−51=(7−5)(7+5)7+5=7−57+5=27+5y=17+5=7−5(7+5)(7−5)=7−57−5=7−52y = \frac{1}{\sqrt{7} + \sqrt{5}} = \frac{\sqrt{7} - \sqrt{5}}{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})} = \frac{\sqrt{7} - \sqrt{5}}{7 - 5} = \frac{\sqrt{7} - \sqrt{5}}{2}y=7+51=(7+5)(7−5)7−5=7−57−5=27−5(1) x+y=7+52+7−52=7+5+7−52=272=7x + y = \frac{\sqrt{7} + \sqrt{5}}{2} + \frac{\sqrt{7} - \sqrt{5}}{2} = \frac{\sqrt{7} + \sqrt{5} + \sqrt{7} - \sqrt{5}}{2} = \frac{2\sqrt{7}}{2} = \sqrt{7}x+y=27+5+27−5=27+5+7−5=227=7(2) xy=7+52⋅7−52=(7+5)(7−5)4=7−54=24=12xy = \frac{\sqrt{7} + \sqrt{5}}{2} \cdot \frac{\sqrt{7} - \sqrt{5}}{2} = \frac{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})}{4} = \frac{7 - 5}{4} = \frac{2}{4} = \frac{1}{2}xy=27+5⋅27−5=4(7+5)(7−5)=47−5=42=21(3) x2+y2=(x+y)2−2xy=(7)2−2⋅12=7−1=6x^2 + y^2 = (x + y)^2 - 2xy = (\sqrt{7})^2 - 2 \cdot \frac{1}{2} = 7 - 1 = 6x2+y2=(x+y)2−2xy=(7)2−2⋅21=7−1=63. 最終的な答え(1) x+y=7x + y = \sqrt{7}x+y=7(2) xy=12xy = \frac{1}{2}xy=21(3) x2+y2=6x^2 + y^2 = 6x2+y2=6