$x = \frac{1}{\sqrt{7} - \sqrt{5}}$, $y = \frac{1}{\sqrt{7} + \sqrt{5}}$のとき、次の式の値を求めよ。 (1) $x + y$ (2) $xy$ (3) $x^2 + y^2$代数学式の計算有理化平方根式の値2025/4/291. 問題の内容x=17−5x = \frac{1}{\sqrt{7} - \sqrt{5}}x=7−51, y=17+5y = \frac{1}{\sqrt{7} + \sqrt{5}}y=7+51のとき、次の式の値を求めよ。(1) x+yx + yx+y(2) xyxyxy(3) x2+y2x^2 + y^2x2+y22. 解き方の手順(1) x+yx + yx+yの値を求める。x+y=17−5+17+5x + y = \frac{1}{\sqrt{7} - \sqrt{5}} + \frac{1}{\sqrt{7} + \sqrt{5}}x+y=7−51+7+51x+y=(7+5)+(7−5)(7−5)(7+5)x + y = \frac{(\sqrt{7} + \sqrt{5}) + (\sqrt{7} - \sqrt{5})}{(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})}x+y=(7−5)(7+5)(7+5)+(7−5)x+y=277−5x + y = \frac{2\sqrt{7}}{7 - 5}x+y=7−527x+y=272x + y = \frac{2\sqrt{7}}{2}x+y=227x+y=7x + y = \sqrt{7}x+y=7(2) xyxyxyの値を求める。xy=17−5×17+5xy = \frac{1}{\sqrt{7} - \sqrt{5}} \times \frac{1}{\sqrt{7} + \sqrt{5}}xy=7−51×7+51xy=1(7−5)(7+5)xy = \frac{1}{(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})}xy=(7−5)(7+5)1xy=17−5xy = \frac{1}{7 - 5}xy=7−51xy=12xy = \frac{1}{2}xy=21(3) x2+y2x^2 + y^2x2+y2の値を求める。x2+y2=(x+y)2−2xyx^2 + y^2 = (x + y)^2 - 2xyx2+y2=(x+y)2−2xyx2+y2=(7)2−2×12x^2 + y^2 = (\sqrt{7})^2 - 2 \times \frac{1}{2}x2+y2=(7)2−2×21x2+y2=7−1x^2 + y^2 = 7 - 1x2+y2=7−1x2+y2=6x^2 + y^2 = 6x2+y2=63. 最終的な答え(1) x+y=7x + y = \sqrt{7}x+y=7(2) xy=12xy = \frac{1}{2}xy=21(3) x2+y2=6x^2 + y^2 = 6x2+y2=6