与えられた和 $S$ を求める問題です。 $S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \dots + n \cdot 3^{n-1}$代数学級数等比数列和の計算数学的帰納法2025/4/301. 問題の内容与えられた和 SSS を求める問題です。S=1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \dots + n \cdot 3^{n-1}S=1⋅1+2⋅3+3⋅32+⋯+n⋅3n−12. 解き方の手順まず、SSS を書き下します。S=1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \dots + n \cdot 3^{n-1}S=1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1次に、3S3S3S を書き下します。3S=1⋅3+2⋅32+3⋅33+⋯+n⋅3n3S = 1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n3S=1⋅3+2⋅32+3⋅33+⋯+n⋅3nS−3SS - 3SS−3S を計算します。S−3S=(1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1)−(1⋅3+2⋅32+3⋅33+⋯+n⋅3n)S - 3S = (1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \dots + n \cdot 3^{n-1}) - (1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n)S−3S=(1⋅1+2⋅3+3⋅32+⋯+n⋅3n−1)−(1⋅3+2⋅32+3⋅33+⋯+n⋅3n)−2S=1+(2−1)⋅3+(3−2)⋅32+⋯+(n−(n−1))⋅3n−1−n⋅3n-2S = 1 + (2-1) \cdot 3 + (3-2) \cdot 3^2 + \dots + (n-(n-1)) \cdot 3^{n-1} - n \cdot 3^n−2S=1+(2−1)⋅3+(3−2)⋅32+⋯+(n−(n−1))⋅3n−1−n⋅3n−2S=1+3+32+⋯+3n−1−n⋅3n-2S = 1 + 3 + 3^2 + \dots + 3^{n-1} - n \cdot 3^n−2S=1+3+32+⋯+3n−1−n⋅3n等比数列の和の公式を利用します。1+3+32+⋯+3n−1=1(3n−1)3−1=3n−121 + 3 + 3^2 + \dots + 3^{n-1} = \frac{1(3^n - 1)}{3 - 1} = \frac{3^n - 1}{2}1+3+32+⋯+3n−1=3−11(3n−1)=23n−1これを −2S-2S−2S の式に代入します。−2S=3n−12−n⋅3n-2S = \frac{3^n - 1}{2} - n \cdot 3^n−2S=23n−1−n⋅3n−2S=3n−1−2n⋅3n2-2S = \frac{3^n - 1 - 2n \cdot 3^n}{2}−2S=23n−1−2n⋅3n−4S=3n−1−2n⋅3n-4S = 3^n - 1 - 2n \cdot 3^n−4S=3n−1−2n⋅3n4S=1−3n+2n⋅3n4S = 1 - 3^n + 2n \cdot 3^n4S=1−3n+2n⋅3nS=1−3n+2n⋅3n4S = \frac{1 - 3^n + 2n \cdot 3^n}{4}S=41−3n+2n⋅3nS=(2n−1)3n+14S = \frac{(2n-1)3^n + 1}{4}S=4(2n−1)3n+13. 最終的な答えS=(2n−1)3n+14S = \frac{(2n-1)3^n + 1}{4}S=4(2n−1)3n+1