与えられた和 $S$ を求める問題です。 $S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \dots + n \cdot 3^{n-1}$

代数学級数等比数列和の計算数学的帰納法
2025/4/30

1. 問題の内容

与えられた和 SS を求める問題です。
S=11+23+332++n3n1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \dots + n \cdot 3^{n-1}

2. 解き方の手順

まず、SS を書き下します。
S=11+23+332++n3n1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \dots + n \cdot 3^{n-1}
次に、3S3S を書き下します。
3S=13+232+333++n3n3S = 1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n
S3SS - 3S を計算します。
S3S=(11+23+332++n3n1)(13+232+333++n3n)S - 3S = (1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \dots + n \cdot 3^{n-1}) - (1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^n)
2S=1+(21)3+(32)32++(n(n1))3n1n3n-2S = 1 + (2-1) \cdot 3 + (3-2) \cdot 3^2 + \dots + (n-(n-1)) \cdot 3^{n-1} - n \cdot 3^n
2S=1+3+32++3n1n3n-2S = 1 + 3 + 3^2 + \dots + 3^{n-1} - n \cdot 3^n
等比数列の和の公式を利用します。
1+3+32++3n1=1(3n1)31=3n121 + 3 + 3^2 + \dots + 3^{n-1} = \frac{1(3^n - 1)}{3 - 1} = \frac{3^n - 1}{2}
これを 2S-2S の式に代入します。
2S=3n12n3n-2S = \frac{3^n - 1}{2} - n \cdot 3^n
2S=3n12n3n2-2S = \frac{3^n - 1 - 2n \cdot 3^n}{2}
4S=3n12n3n-4S = 3^n - 1 - 2n \cdot 3^n
4S=13n+2n3n4S = 1 - 3^n + 2n \cdot 3^n
S=13n+2n3n4S = \frac{1 - 3^n + 2n \cdot 3^n}{4}
S=(2n1)3n+14S = \frac{(2n-1)3^n + 1}{4}

3. 最終的な答え

S=(2n1)3n+14S = \frac{(2n-1)3^n + 1}{4}

「代数学」の関連問題

昨日、庭に咲いていた赤バラと白バラの比は7:5でした。今日、赤バラが10個、白バラが5個咲いたので、咲いている赤バラと白バラの比は3:2になりました。今日咲いている赤バラと白バラの花の個数の合計を求め...

方程式文章問題連立方程式
2025/5/1

2次方程式 $x^2 - 2ax + 1 = 0$ が $0 < x < 3$ の範囲に異なる2つの実数解を持つような定数 $a$ の値の範囲を求める問題です。

二次方程式解の配置判別式不等式
2025/5/1

与えられた式 $\frac{\sqrt{5}+\sqrt{3}+\sqrt{2}}{\sqrt{5}+\sqrt{3}-\sqrt{2}}$ を簡約化する問題です。

式の簡約化分母の有理化平方根
2025/5/1

$a$ を定数とする。2つの2次方程式 $2x^2 - ax - (2a + 2) = 0$ と $x^2 - (a+2)x + (a+7) = 0$ が共通解を1つだけ持つとき、その共通解と $a$...

二次方程式共通解解の公式
2025/5/1

$x$ の方程式 $x^3 - (a+1)x + a = 0$ について、以下の問いに答えます。 (1) $a = -1$ および $a = 1$ のときの解をそれぞれ求めます。 (2) 異なる実数解...

三次方程式解の個数因数分解判別式
2025/5/1

(1) 全ての実数 $x$ に対して $ax^2 + (a+1)x + a < 0$ が成り立つような定数 $a$ の値の範囲を求める。 (2) 2次不等式 $ax^2 + 8x + b > 0$ の...

二次不等式判別式解と係数の関係
2025/5/1

問題は、$\mathbb{R}[x]_2$ の基が与えられたときに、例題6.1.2で定義された内積に関して、シュミットの直交化法を用いて正規直交化を行うことです。問題は (1) $\{1, x, x^...

直交化内積シュミットの直交化法多項式
2025/5/1

Table 1(貯蓄関数)から、貯蓄 $S$ を所得 $Y$ の一次関数として表す。

一次関数貯蓄関数線形モデル連立方程式
2025/5/1

複素数 $z_1, z_2, z_3, \dots$ が $z_1=1$ および $z_{n+1} = \frac{1}{2}(1+i)z_n + \frac{1}{2}$ ($n=1,2,3,\do...

複素数数列等比数列複素平面
2025/5/1

問題は多項式を因数分解することです。与えられた多項式は、$m^3 + 2x^2 - 4x - 8$ です。ただし、変数 $m$ と $x$ が混在しているのは不自然なので、$m$ を $x$ と解釈し...

因数分解多項式
2025/5/1