次の和 $S$ を求めよ。 $S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \cdots + n \cdot 3^{n-1}$

解析学級数等比数列
2025/4/30

1. 問題の内容

次の和 SS を求めよ。
S=11+23+332++n3n1S = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \cdots + n \cdot 3^{n-1}

2. 解き方の手順

まず、3S3S を計算する。
3S=13+232+333++(n1)3n1+n3n3S = 1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \cdots + (n-1) \cdot 3^{n-1} + n \cdot 3^n
次に、S3SS - 3S を計算する。
S3S=(11+23+332++n3n1)(13+232+333++(n1)3n1+n3n)S - 3S = (1 \cdot 1 + 2 \cdot 3 + 3 \cdot 3^2 + \cdots + n \cdot 3^{n-1}) - (1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \cdots + (n-1) \cdot 3^{n-1} + n \cdot 3^n)
2S=1+(2313)+(332232)++(n3n1(n1)3n1)n3n-2S = 1 + (2 \cdot 3 - 1 \cdot 3) + (3 \cdot 3^2 - 2 \cdot 3^2) + \cdots + (n \cdot 3^{n-1} - (n-1) \cdot 3^{n-1}) - n \cdot 3^n
2S=1+3+32++3n1n3n-2S = 1 + 3 + 3^2 + \cdots + 3^{n-1} - n \cdot 3^n
等比数列の和の公式を用いて、 1+3+32++3n11 + 3 + 3^2 + \cdots + 3^{n-1} を計算する。
1+3+32++3n1=1(3n1)31=3n121 + 3 + 3^2 + \cdots + 3^{n-1} = \frac{1(3^n - 1)}{3 - 1} = \frac{3^n - 1}{2}
したがって、
2S=3n12n3n-2S = \frac{3^n - 1}{2} - n \cdot 3^n
2S=3n12n3n2-2S = \frac{3^n - 1 - 2n \cdot 3^n}{2}
S=2n3n3n+14S = \frac{2n \cdot 3^n - 3^n + 1}{4}
S=(2n1)3n+14S = \frac{(2n - 1)3^n + 1}{4}

3. 最終的な答え

S=(2n1)3n+14S = \frac{(2n - 1)3^n + 1}{4}

「解析学」の関連問題

$h(x) = x^2 - 6x + 9$ が与えられている。 $C_1: y = h(x)$, $C_2: y = h(x+4)$ とする。 (1) $C_1$ 上の点 $(1, h(1))$ にお...

微分接線積分面積
2025/4/30

0 ≤ θ < 2π の範囲において、以下の式(1)を満たすθについて考える問題です。 $\sqrt{3} \sin 2\theta + \cos 2\theta = \frac{8}{3} \cos...

三角関数三角関数の合成2倍角の公式方程式解の公式arcsin
2025/4/30

$a=3, b=6$ とし、$h(x) = f(x) + g(x)$ とする。 $-1 \le x \le \frac{1}{2}$ の範囲における関数 $h(x)$ の最小値を考えます。ここで、$t...

関数の最小値指数関数二次関数対数関数関数の合成
2025/4/30

$a=3$, $b=6$ とし、$h(x)=f(x)g(x)$とする。$-1 \le x \le \frac{1}{2}$ の範囲における関数 $h(x)$ の最小値について考える。$t = 8^x$...

関数の最小値指数関数2次関数対数関数
2025/4/30

$a=3$, $b=6$とし、$h(x) = f(x) + g(x)$とする。$-1 \leq x \leq \frac{1}{2}$の範囲における関数$h(x)$の最小値について考える。$t = 8...

関数の最小値指数関数微分不等式
2025/4/30

与えられた積分 $\int xe^{-2x} dx$ を計算します。

積分部分積分指数関数
2025/4/30

関数 $f(x)=(x-1)^2(x+1)^2$ について、以下の問いに答えます。 (1) 関数 $y=f(x)$ の増減および極値を調べて、そのグラフの概形を描きます。 (2) $t$ を定数とする...

関数の増減極値接線グラフ微分
2025/4/30

$\int x^2 e^x dx$ を計算せよ。つまり、$x^2 e^x$ の不定積分を求めよ。

積分不定積分部分積分
2025/4/30

$\int \frac{\cos x}{1 - \sin x} dx$ を計算せよ。

積分置換積分三角関数
2025/4/30

実数 $a, b$ を用いて定義される3次関数 $f(x) = x^3 + 3ax^2 + 3bx$ について、以下の問いに答える問題です。 (1) $f(x)$ が極大値と極小値を持つための $a,...

三次関数極大値極小値微分判別式グラフ
2025/4/30