ある大学の入学者のうち、a大学、b大学、c大学を受験した人全体の集合をそれぞれA, B, Cで表す。 $n(A) = 65$, $n(B) = 40$, $n(A \cap B) = 14$, $n(C \cap A) = 11$, $n(B \cup C) = 55$, $n(C \cup A) = 78$, $n(A \cup B \cup C) = 99$のとき、以下の問いに答える。 (1) c大学を受験した人は何人か。 (2) a大学, b大学, c大学のすべてを受験した人は何人か。 (3) a大学, b大学, c大学のどれか1大学のみを受験した人は何人か。

離散数学集合包除原理ベン図
2025/5/1

1. 問題の内容

ある大学の入学者のうち、a大学、b大学、c大学を受験した人全体の集合をそれぞれA, B, Cで表す。
n(A)=65n(A) = 65, n(B)=40n(B) = 40, n(AB)=14n(A \cap B) = 14, n(CA)=11n(C \cap A) = 11, n(BC)=55n(B \cup C) = 55, n(CA)=78n(C \cup A) = 78, n(ABC)=99n(A \cup B \cup C) = 99のとき、以下の問いに答える。
(1) c大学を受験した人は何人か。
(2) a大学, b大学, c大学のすべてを受験した人は何人か。
(3) a大学, b大学, c大学のどれか1大学のみを受験した人は何人か。

2. 解き方の手順

(1)
包除原理より、
n(ABC)=n(A)+n(B)+n(C)n(AB)n(BC)n(CA)+n(ABC)n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)
n(BC)=n(B)+n(C)n(BC)n(B \cup C) = n(B) + n(C) - n(B \cap C)
n(CA)=n(C)+n(A)n(CA)n(C \cup A) = n(C) + n(A) - n(C \cap A)
与えられた条件より、
99=65+40+n(C)14n(BC)11+n(ABC)99 = 65 + 40 + n(C) - 14 - n(B \cap C) - 11 + n(A \cap B \cap C)
55=40+n(C)n(BC)55 = 40 + n(C) - n(B \cap C)
78=n(C)+651178 = n(C) + 65 - 11
n(C)=7865+11=24n(C) = 78 - 65 + 11 = 24
55=40+24n(BC)55 = 40 + 24 - n(B \cap C)
n(BC)=40+2455=9n(B \cap C) = 40 + 24 - 55 = 9
99=65+40+2414911+n(ABC)99 = 65 + 40 + 24 - 14 - 9 - 11 + n(A \cap B \cap C)
99=95+n(ABC)99 = 95 + n(A \cap B \cap C)
n(ABC)=4n(A \cap B \cap C) = 4
(2)
(1)より、n(ABC)=4n(A \cap B \cap C) = 4
(3)
n(Aのみ)=n(A)n(AB)n(CA)+n(ABC)=651411+4=44n(Aのみ) = n(A) - n(A \cap B) - n(C \cap A) + n(A \cap B \cap C) = 65 - 14 - 11 + 4 = 44
n(Bのみ)=n(B)n(AB)n(BC)+n(ABC)=40149+4=21n(Bのみ) = n(B) - n(A \cap B) - n(B \cap C) + n(A \cap B \cap C) = 40 - 14 - 9 + 4 = 21
n(Cのみ)=n(C)n(BC)n(CA)+n(ABC)=24911+4=8n(Cのみ) = n(C) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C) = 24 - 9 - 11 + 4 = 8
求める人数は、44+21+8=7344 + 21 + 8 = 73

3. 最終的な答え

(1) 24人
(2) 4人
(3) 73人

「離散数学」の関連問題

4種類の文字a, b, c, d から重複を許して7個取る組み合わせの総数を求める問題です。

組み合わせ重複組み合わせ
2025/6/5

正の整数 $n$ に対して、A, B, C の 3 種類の文字から重複を許して $n$ 個の文字を 1 列に並べるとき、A と B が隣り合わない並べ方の総数を $f_n$ とする。 (1) A と ...

数列漸化式組み合わせ
2025/6/5

集合 $A = \{1, 2, 3, 4, 5\}$ の部分集合の個数を求める問題です。

集合部分集合組み合わせ
2025/6/4

A, B, C, D, E, F, Gの7人が1列に並ぶときの並び方について、以下の4つの条件を満たす場合の数を求める。 (ア) AとBが隣り合う。 (イ) AとGが両端にくる。 (ウ) A, B, ...

順列組み合わせ場合の数条件付き順列
2025/6/4

7つの文字a, a, a, b, b, b, cを1列に並べる並べ方の総数を求めます。

順列組み合わせ重複順列
2025/6/4

集合 $\{a, b\}$ の部分集合をすべて挙げてください。

集合部分集合
2025/6/4

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$、集合 $A = \{1, 2, 4, 6, 8\}$、集合 $B = \{2, 3, 5, 9, 10\}$ ...

集合補集合和集合共通部分
2025/6/4

集合 $A$ と $B$ が与えられたとき、共通部分 $A \cap B$ と和集合 $A \cup B$ を求めます。 (1) $A = \{1, 2, 3, 6\}, B = \{2, 3, 7,...

集合共通部分和集合集合演算
2025/6/4

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ の部分集合 $A, B$ について、$\overline{A} \cap \overline{B} = \{1, 9\...

集合集合演算ド・モルガンの法則
2025/6/4

右図のA地点からB地点へ行く。 (1) 最短経路は何通りあるか。 (2) P地点を通っていく最短経路は何通りあるか。

組み合わせ最短経路組み合わせ論
2025/6/4