定積分 $\int_{1}^{2} \frac{5x^2 - 3x}{\sqrt{x}} dx$ を計算します。解析学定積分積分計算累乗根2025/5/11. 問題の内容定積分 ∫125x2−3xxdx\int_{1}^{2} \frac{5x^2 - 3x}{\sqrt{x}} dx∫12x5x2−3xdx を計算します。2. 解き方の手順まず、被積分関数を整理します。x=x1/2\sqrt{x} = x^{1/2}x=x1/2 なので、5x2−3xx=5x2x1/2−3xx1/2=5x2−1/2−3x1−1/2=5x3/2−3x1/2 \frac{5x^2 - 3x}{\sqrt{x}} = \frac{5x^2}{x^{1/2}} - \frac{3x}{x^{1/2}} = 5x^{2 - 1/2} - 3x^{1 - 1/2} = 5x^{3/2} - 3x^{1/2} x5x2−3x=x1/25x2−x1/23x=5x2−1/2−3x1−1/2=5x3/2−3x1/2したがって、積分は次のようになります。∫12(5x3/2−3x1/2)dx \int_{1}^{2} (5x^{3/2} - 3x^{1/2}) dx ∫12(5x3/2−3x1/2)dx次に、不定積分を求めます。∫(5x3/2−3x1/2)dx=5∫x3/2dx−3∫x1/2dx \int (5x^{3/2} - 3x^{1/2}) dx = 5 \int x^{3/2} dx - 3 \int x^{1/2} dx ∫(5x3/2−3x1/2)dx=5∫x3/2dx−3∫x1/2dx=5⋅x3/2+13/2+1−3⋅x1/2+11/2+1+C=5⋅x5/25/2−3⋅x3/23/2+C = 5 \cdot \frac{x^{3/2 + 1}}{3/2 + 1} - 3 \cdot \frac{x^{1/2 + 1}}{1/2 + 1} + C = 5 \cdot \frac{x^{5/2}}{5/2} - 3 \cdot \frac{x^{3/2}}{3/2} + C =5⋅3/2+1x3/2+1−3⋅1/2+1x1/2+1+C=5⋅5/2x5/2−3⋅3/2x3/2+C=5⋅25x5/2−3⋅23x3/2+C=2x5/2−2x3/2+C = 5 \cdot \frac{2}{5} x^{5/2} - 3 \cdot \frac{2}{3} x^{3/2} + C = 2x^{5/2} - 2x^{3/2} + C =5⋅52x5/2−3⋅32x3/2+C=2x5/2−2x3/2+C最後に、定積分を計算します。∫12(5x3/2−3x1/2)dx=[2x5/2−2x3/2]12 \int_{1}^{2} (5x^{3/2} - 3x^{1/2}) dx = [2x^{5/2} - 2x^{3/2}]_{1}^{2} ∫12(5x3/2−3x1/2)dx=[2x5/2−2x3/2]12=(2(2)5/2−2(2)3/2)−(2(1)5/2−2(1)3/2)=(2⋅222−2⋅22)−(2−2) = (2(2)^{5/2} - 2(2)^{3/2}) - (2(1)^{5/2} - 2(1)^{3/2}) = (2 \cdot 2^{2} \sqrt{2} - 2 \cdot 2 \sqrt{2}) - (2 - 2) =(2(2)5/2−2(2)3/2)−(2(1)5/2−2(1)3/2)=(2⋅222−2⋅22)−(2−2)=(82−42)−0=42 = (8\sqrt{2} - 4\sqrt{2}) - 0 = 4\sqrt{2} =(82−42)−0=423. 最終的な答え424\sqrt{2}42