$\int_{1}^{2} x \log(x+1) dx$ を計算します。解析学積分部分積分定積分対数関数2025/5/11. 問題の内容∫12xlog(x+1)dx\int_{1}^{2} x \log(x+1) dx∫12xlog(x+1)dx を計算します。2. 解き方の手順部分積分を用いて積分を行います。u=log(x+1)u = \log(x+1)u=log(x+1) と dv=xdxdv = x dxdv=xdx とおくと、du=1x+1dxdu = \frac{1}{x+1} dxdu=x+11dx 、 v=x22v = \frac{x^2}{2}v=2x2 となります。したがって、∫xlog(x+1)dx=x22log(x+1)−∫x22⋅1x+1dx\int x \log(x+1) dx = \frac{x^2}{2} \log(x+1) - \int \frac{x^2}{2} \cdot \frac{1}{x+1} dx∫xlog(x+1)dx=2x2log(x+1)−∫2x2⋅x+11dx∫x22(x+1)dx\int \frac{x^2}{2(x+1)} dx∫2(x+1)x2dx を計算します。x22(x+1)=12x2x+1\frac{x^2}{2(x+1)} = \frac{1}{2} \frac{x^2}{x+1}2(x+1)x2=21x+1x2ここで、割り算を行うと、x2x+1=x−1+1x+1\frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}x+1x2=x−1+x+11したがって、∫x22(x+1)dx=12∫(x−1+1x+1)dx=12(x22−x+log∣x+1∣)+C\int \frac{x^2}{2(x+1)} dx = \frac{1}{2} \int (x - 1 + \frac{1}{x+1}) dx = \frac{1}{2} (\frac{x^2}{2} - x + \log|x+1|) + C∫2(x+1)x2dx=21∫(x−1+x+11)dx=21(2x2−x+log∣x+1∣)+Cよって、∫xlog(x+1)dx=x22log(x+1)−12(x22−x+log∣x+1∣)+C\int x \log(x+1) dx = \frac{x^2}{2} \log(x+1) - \frac{1}{2} (\frac{x^2}{2} - x + \log|x+1|) + C∫xlog(x+1)dx=2x2log(x+1)−21(2x2−x+log∣x+1∣)+C定積分を計算します。∫12xlog(x+1)dx=[x22log(x+1)−12(x22−x+log∣x+1∣)]12\int_{1}^{2} x \log(x+1) dx = [\frac{x^2}{2} \log(x+1) - \frac{1}{2} (\frac{x^2}{2} - x + \log|x+1|)]_{1}^{2}∫12xlog(x+1)dx=[2x2log(x+1)−21(2x2−x+log∣x+1∣)]12=[x22log(x+1)−x24+x2−12log(x+1)]12= [\frac{x^2}{2} \log(x+1) - \frac{x^2}{4} + \frac{x}{2} - \frac{1}{2}\log(x+1)]_{1}^{2}=[2x2log(x+1)−4x2+2x−21log(x+1)]12=[42log(3)−44+22−12log(3)]−[12log(2)−14+12−12log(2)]= [\frac{4}{2} \log(3) - \frac{4}{4} + \frac{2}{2} - \frac{1}{2}\log(3)] - [\frac{1}{2} \log(2) - \frac{1}{4} + \frac{1}{2} - \frac{1}{2}\log(2)]=[24log(3)−44+22−21log(3)]−[21log(2)−41+21−21log(2)]=2log(3)−1+1−12log(3)−12log(2)+14−12+12log(2)= 2\log(3) - 1 + 1 - \frac{1}{2}\log(3) - \frac{1}{2}\log(2) + \frac{1}{4} - \frac{1}{2} + \frac{1}{2}\log(2)=2log(3)−1+1−21log(3)−21log(2)+41−21+21log(2)=32log(3)−14= \frac{3}{2}\log(3) - \frac{1}{4}=23log(3)−413. 最終的な答え32log(3)−14\frac{3}{2}\log(3) - \frac{1}{4}23log(3)−41