三角関数の値を求める問題です。 (1) $\sin \frac{16}{3} \pi$ (2) $\cos \frac{7}{2} \pi$ (3) $\tan \left( -\frac{11}{6} \pi \right)$解析学三角関数三角関数の値sincostan弧度法2025/5/11. 問題の内容三角関数の値を求める問題です。(1) sin163π\sin \frac{16}{3} \pisin316π(2) cos72π\cos \frac{7}{2} \picos27π(3) tan(−116π)\tan \left( -\frac{11}{6} \pi \right)tan(−611π)2. 解き方の手順(1) sin163π\sin \frac{16}{3} \pisin316π について163π=153π+13π=5π+π3\frac{16}{3} \pi = \frac{15}{3} \pi + \frac{1}{3} \pi = 5\pi + \frac{\pi}{3}316π=315π+31π=5π+3πsin(5π+π3)=sin(4π+π+π3)=sin(π+π3)=−sinπ3\sin \left( 5\pi + \frac{\pi}{3} \right) = \sin \left( 4\pi + \pi + \frac{\pi}{3} \right) = \sin \left( \pi + \frac{\pi}{3} \right) = - \sin \frac{\pi}{3}sin(5π+3π)=sin(4π+π+3π)=sin(π+3π)=−sin3πsinπ3=32\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}sin3π=23したがって、sin163π=−32\sin \frac{16}{3} \pi = - \frac{\sqrt{3}}{2}sin316π=−23(2) cos72π\cos \frac{7}{2} \picos27π について72π=62π+12π=3π+π2\frac{7}{2} \pi = \frac{6}{2} \pi + \frac{1}{2} \pi = 3\pi + \frac{\pi}{2}27π=26π+21π=3π+2πcos(3π+π2)=cos(2π+π+π2)=cos(π+π2)=−cosπ2=0\cos \left( 3\pi + \frac{\pi}{2} \right) = \cos \left( 2\pi + \pi + \frac{\pi}{2} \right) = \cos \left( \pi + \frac{\pi}{2} \right) = - \cos \frac{\pi}{2} = 0cos(3π+2π)=cos(2π+π+2π)=cos(π+2π)=−cos2π=0したがって、cos72π=0\cos \frac{7}{2} \pi = 0cos27π=0(3) tan(−116π)\tan \left( -\frac{11}{6} \pi \right)tan(−611π) についてtan(−116π)=−tan116π\tan \left( -\frac{11}{6} \pi \right) = - \tan \frac{11}{6} \pitan(−611π)=−tan611π116π=2π−π6\frac{11}{6} \pi = 2\pi - \frac{\pi}{6}611π=2π−6π−tan116π=−tan(2π−π6)=−tan(−π6)=tanπ6- \tan \frac{11}{6} \pi = - \tan \left( 2\pi - \frac{\pi}{6} \right) = - \tan \left( - \frac{\pi}{6} \right) = \tan \frac{\pi}{6}−tan611π=−tan(2π−6π)=−tan(−6π)=tan6πtanπ6=13=33\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}tan6π=31=33したがって、tan(−116π)=33\tan \left( -\frac{11}{6} \pi \right) = \frac{\sqrt{3}}{3}tan(−611π)=333. 最終的な答え(1) sin163π=−32\sin \frac{16}{3} \pi = - \frac{\sqrt{3}}{2}sin316π=−23(2) cos72π=0\cos \frac{7}{2} \pi = 0cos27π=0(3) tan(−116π)=33\tan \left( -\frac{11}{6} \pi \right) = \frac{\sqrt{3}}{3}tan(−611π)=33