与えられた2次方程式 $x^2 - 4x + 1 = 0$ を解く問題です。

代数学二次方程式解の公式平方根
2025/5/2

1. 問題の内容

与えられた2次方程式 x24x+1=0x^2 - 4x + 1 = 0 を解く問題です。

2. 解き方の手順

与えられた2次方程式 x24x+1=0x^2 - 4x + 1 = 0 を解くために、解の公式を使用します。
解の公式は、一般的に ax2+bx+c=0ax^2 + bx + c = 0 という形の2次方程式に対して、以下の式で表されます。
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
今回の問題では、a=1a = 1, b=4b = -4, c=1c = 1 です。これらの値を解の公式に代入すると、
x=(4)±(4)24(1)(1)2(1)x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(1)}}{2(1)}
x=4±1642x = \frac{4 \pm \sqrt{16 - 4}}{2}
x=4±122x = \frac{4 \pm \sqrt{12}}{2}
12\sqrt{12}232\sqrt{3} と簡略化できるので、
x=4±232x = \frac{4 \pm 2\sqrt{3}}{2}
分子と分母を2で割ると、
x=2±3x = 2 \pm \sqrt{3}

3. 最終的な答え

したがって、2次方程式 x24x+1=0x^2 - 4x + 1 = 0 の解は、
x=2+3x = 2 + \sqrt{3} と x=23x = 2 - \sqrt{3}

「代数学」の関連問題

$x-2<0$ のとき、$\sqrt{x^2 - 4x + 4}$ を $x$ の多項式で表す問題です。

絶対値因数分解不等式平方根
2025/5/4

与えられた式を簡略化します。式は次のとおりです。 $\frac{1 - \frac{1}{x}}{x - \frac{1}{x}}$

式の簡略化分数因数分解代数
2025/5/4

$4 + \sqrt{3}$ の整数の部分を $a$, 小数の部分を $b$ とするとき、以下の値を求めます。 (1) $a$ (2) $b$ (3) $b^2 + 4b$

平方根整数の部分小数の部分式の計算
2025/5/4

与えられた式を計算して、最も簡単な形で表してください。 与えられた式は、 $\frac{1}{(x-3)(x-1)} + \frac{1}{(x-1)(x+1)} + \frac{1}{(x+1)(x...

部分分数分解分数式式の計算代数
2025/5/4

与えられた式を計算して簡単にします。 与えられた式は、 $\frac{x+5}{x^2 - 2x - 3} + \frac{1}{x^2 + 3x + 2}$ です。

分数式式の計算因数分解通分
2025/5/4

与えられた式 $ \frac{2}{x+1} + \frac{3}{x-1} $ を計算し、一つの分数として表す。

分数式式の計算通分
2025/5/4

与えられた分数の引き算 $\frac{x^2-3}{x+2} - \frac{1}{x+2}$ を計算し、できる限り簡単にする問題です。

分数代数式因数分解約分
2025/5/4

与えられた数式 $\frac{x}{x^2-1} + \frac{1}{x^2-1}$ を簡略化します。

分数式式の簡略化因数分解
2025/5/4

問題は、分数の引き算 $\frac{2x}{x+1} - \frac{x}{x+1}$ を計算することです。

分数代数計算式の計算
2025/5/4

次の式を計算します。 $\frac{3a^2+8a+4}{a^2-1} \div \frac{6a^2+a-2}{a^2+a} \times \frac{2a-1}{a+2}$

式の計算因数分解分数式
2025/5/4