$x = \frac{\sqrt{2}+1}{\sqrt{2}-1}$ 、 $y = \frac{\sqrt{2}-1}{\sqrt{2}+1}$ のとき、$x^2 + y^2$ の値を求める問題です。代数学式の計算有理化展開平方根代数2025/5/31. 問題の内容x=2+12−1x = \frac{\sqrt{2}+1}{\sqrt{2}-1}x=2−12+1 、 y=2−12+1y = \frac{\sqrt{2}-1}{\sqrt{2}+1}y=2+12−1 のとき、x2+y2x^2 + y^2x2+y2 の値を求める問題です。2. 解き方の手順まず、xxx と yyy をそれぞれ有理化します。x=2+12−1=(2+1)(2+1)(2−1)(2+1)=2+22+12−1=3+22x = \frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{2 + 2\sqrt{2} + 1}{2 - 1} = 3 + 2\sqrt{2}x=2−12+1=(2−1)(2+1)(2+1)(2+1)=2−12+22+1=3+22y=2−12+1=(2−1)(2−1)(2+1)(2−1)=2−22+12−1=3−22y = \frac{\sqrt{2}-1}{\sqrt{2}+1} = \frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{2 - 2\sqrt{2} + 1}{2 - 1} = 3 - 2\sqrt{2}y=2+12−1=(2+1)(2−1)(2−1)(2−1)=2−12−22+1=3−22次に、x2x^2x2 と y2y^2y2 を計算します。x2=(3+22)2=9+122+8=17+122x^2 = (3 + 2\sqrt{2})^2 = 9 + 12\sqrt{2} + 8 = 17 + 12\sqrt{2}x2=(3+22)2=9+122+8=17+122y2=(3−22)2=9−122+8=17−122y^2 = (3 - 2\sqrt{2})^2 = 9 - 12\sqrt{2} + 8 = 17 - 12\sqrt{2}y2=(3−22)2=9−122+8=17−122最後に、x2+y2x^2 + y^2x2+y2 を計算します。x2+y2=(17+122)+(17−122)=17+17=34x^2 + y^2 = (17 + 12\sqrt{2}) + (17 - 12\sqrt{2}) = 17 + 17 = 34x2+y2=(17+122)+(17−122)=17+17=343. 最終的な答えx2+y2=34x^2 + y^2 = 34x2+y2=34