$\left(\frac{x}{2} - \frac{1}{x}\right)^{10}$ の展開式における $x^2$ の係数を求めよ。

代数学二項定理展開係数
2025/5/4

1. 問題の内容

(x21x)10\left(\frac{x}{2} - \frac{1}{x}\right)^{10} の展開式における x2x^2 の係数を求めよ。

2. 解き方の手順

二項定理を用いて、一般項を求める。
(x21x)10=k=01010Ck(x2)10k(1x)k\left(\frac{x}{2} - \frac{1}{x}\right)^{10} = \sum_{k=0}^{10} {}_{10}C_k \left(\frac{x}{2}\right)^{10-k} \left(-\frac{1}{x}\right)^k
一般項は
10Ck(x2)10k(1x)k=10Ck(12)10kx10k(1)kxk=10Ck(12)10k(1)kx102k{}_{10}C_k \left(\frac{x}{2}\right)^{10-k} \left(-\frac{1}{x}\right)^k = {}_{10}C_k \left(\frac{1}{2}\right)^{10-k} x^{10-k} (-1)^k x^{-k} = {}_{10}C_k \left(\frac{1}{2}\right)^{10-k} (-1)^k x^{10-2k}
x2x^2 の係数を求めるので、 x102k=x2x^{10-2k} = x^2 となる kk を求める。
102k=210 - 2k = 2
2k=82k = 8
k=4k = 4
したがって、x2x^2 の項は
10C4(12)104(1)4x2=10C4(12)6x2{}_{10}C_4 \left(\frac{1}{2}\right)^{10-4} (-1)^4 x^2 = {}_{10}C_4 \left(\frac{1}{2}\right)^6 x^2
係数は 10C4(12)6{}_{10}C_4 \left(\frac{1}{2}\right)^6 である。
10C4=10!4!6!=10×9×8×74×3×2×1=10×3×7=210{}_{10}C_4 = \frac{10!}{4!6!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 10 \times 3 \times 7 = 210
(12)6=164\left(\frac{1}{2}\right)^6 = \frac{1}{64}
係数は
210×164=21064=10532210 \times \frac{1}{64} = \frac{210}{64} = \frac{105}{32}

3. 最終的な答え

10532\frac{105}{32}

「代数学」の関連問題

与えられた式 $8x^3 - 125y^3$ を因数分解してください。

因数分解多項式立方差
2025/5/4

与えられた連立方程式を解いて、$x$ と $y$ の値を求めます。 連立方程式は次の通りです。 $\begin{cases} \frac{x}{4} + \frac{y}{6} = 2 \\ x + ...

連立方程式代入法方程式
2025/5/4

与えられた式 $x^3 - 8$ を因数分解する問題です。

因数分解多項式3次式
2025/5/4

与えられた連立方程式を解きます。連立方程式は以下の通りです。 $100x - 100y = 400$ $2x = 3(1-y)$

連立方程式一次方程式代入法
2025/5/4

与えられた4つの式を展開する問題です。 (1) $(2x+3)(6x+5)$ (2) $(5x+2)(3x-8)$ (3) $(2x-y)(x+3y)$ (4) $(3x-a)(4x-5a)$

展開多項式分配法則
2025/5/4

式 $x^2 - 2xyz - 3y^2 z - 2x^2 + 4xy + 6y^2$ を因数分解してください。

因数分解多項式
2025/5/4

与えられた式を因数分解します。 (2) $ab(a+b) + bc(b+c) + ca(c+a) + 2abc$ (3) $a(b-c)^2 + b(c-a)^2 + c(a-b)^2 + 8abc$...

因数分解多項式対称式
2025/5/4

$a^2(b-c) + b^2(c-a) + c^2(a-b) = a^2b - a^2c + b^2c - b^2a + c^2a - c^2b$

因数分解多項式式の展開
2025/5/4

$k$ を整数の定数とし、$f(x) = x^2 - 2kx - 3k^2 + 3k + 1$ とおく。 (1) $k \ge 2$ のとき、$\sqrt{4k^2 - 3k - 1}$ の整数部分を...

二次不等式平方根整数部分不等式の解
2025/5/4

与えられた4つの式を展開する問題です。 (1) $(a^2+1)(a+1)(a-1)$ (2) $(x^2+9y^2)(x+3y)(x-3y)$ (3) $(x+3)^2(x-3)^2$ (4) $(...

展開式の展開因数分解多項式
2025/5/4