与えられた式 $a^2(b-c) + b^2(c-a) + c^2(a-b)$ を因数分解してください。

代数学因数分解多項式対称式
2025/5/4
はい、承知しました。46の(1)の問題を解きます。

1. 問題の内容

与えられた式 a2(bc)+b2(ca)+c2(ab)a^2(b-c) + b^2(c-a) + c^2(a-b) を因数分解してください。

2. 解き方の手順

まず、式を展開します。
a2(bc)+b2(ca)+c2(ab)=a2ba2c+b2cb2a+c2ac2ba^2(b-c) + b^2(c-a) + c^2(a-b) = a^2b - a^2c + b^2c - b^2a + c^2a - c^2b
次に、aについて整理します。
a2ba2cb2a+c2a+b2cc2b=(bc)a2(b2c2)a+(b2cc2b)a^2b - a^2c - b^2a + c^2a + b^2c - c^2b = (b-c)a^2 - (b^2 - c^2)a + (b^2c - c^2b)
さらに変形します。
(bc)a2(b+c)(bc)a+bc(bc)(b-c)a^2 - (b+c)(b-c)a + bc(b-c)
(bc)(b-c)が共通因数なので、これで括ります。
(bc)(a2(b+c)a+bc)(b-c)(a^2 - (b+c)a + bc)
括弧内を因数分解します。
(bc)(ab)(ac)(b-c)(a-b)(a-c)
符号を整理して、輪環の順に並べます。
(ab)(bc)(ca)-(a-b)(b-c)(c-a)

3. 最終的な答え

(ab)(bc)(ca)-(a-b)(b-c)(c-a)

「代数学」の関連問題

2次関数 $y = x^2 - 2(a-2)x + 2a^2 - 7a$ のグラフを $G$ とする。 (1) $G$ の頂点の座標を求めよ。また、$G$ が $x$ 軸と共有点を持つような $a$ ...

二次関数頂点二次不等式平方完成
2025/5/4

与えられた式 $2ca + 2a^2 + ab - b^2 - bc$ を $c$ について整理し、因数分解を試みる問題です。

因数分解式の整理多項式
2025/5/4

与えられた式 $2ca + 2a^2 + ab - b^2 - bc$ を因数分解してください。

因数分解多項式
2025/5/4

与えられた式 $2a^2 - b^2 + ab - bc + 2ca$ を因数分解してください。

因数分解多項式
2025/5/4

点 $(1, 2)$ を通り、直線 $y = -x - 3$ に平行な直線の方程式を求める問題です。

直線方程式平行傾き
2025/5/4

与えられた6つの式を因数分解する問題です。 (1) $2x^2 + 3x + 1$ (2) $4x^2 - 15x + 9$ (3) $6x^2 - 5x - 6$ (4) $3x^2 - 2xy -...

因数分解二次式
2025/5/4

2つの直線、$y = 6x - 7$と$2x + y - 9 = 0$の交点の座標を求める問題です。

連立方程式座標直線の交点
2025/5/4

与えられた直線の方程式 $3x - y - 10 = 0$ の傾きと切片を求める。

一次関数傾き切片方程式
2025/5/4

与えられた多項式 $5x^2 + 7xy + 2y^2 - 2x + y - 3$ を因数分解する問題です。

因数分解多項式
2025/5/4

初項 $a_1 = 1$、漸化式 $a_{n+1} = a_n + 4^n$ で定義される数列 $\{a_n\}$ の一般項 $a_n$ を求める問題です。

数列漸化式等比数列の和一般項
2025/5/4