$x^6 - y^6$ を因数分解する問題です。代数学因数分解多項式2025/5/51. 問題の内容x6−y6x^6 - y^6x6−y6 を因数分解する問題です。2. 解き方の手順まず、x6−y6x^6 - y^6x6−y6 を (x3)2−(y3)2(x^3)^2 - (y^3)^2(x3)2−(y3)2 と見なして、和と差の積の公式 a2−b2=(a+b)(a−b)a^2 - b^2 = (a + b)(a - b)a2−b2=(a+b)(a−b) を適用します。(x3)2−(y3)2=(x3+y3)(x3−y3)(x^3)^2 - (y^3)^2 = (x^3 + y^3)(x^3 - y^3)(x3)2−(y3)2=(x3+y3)(x3−y3)次に、x3+y3x^3 + y^3x3+y3 と x3−y3x^3 - y^3x3−y3 をそれぞれ因数分解します。和の3乗と差の3乗の公式を使います。x3+y3=(x+y)(x2−xy+y2)x^3 + y^3 = (x + y)(x^2 - xy + y^2)x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)x^3 - y^3 = (x - y)(x^2 + xy + y^2)x3−y3=(x−y)(x2+xy+y2)したがって、x6−y6=(x+y)(x2−xy+y2)(x−y)(x2+xy+y2)x^6 - y^6 = (x + y)(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)x6−y6=(x+y)(x2−xy+y2)(x−y)(x2+xy+y2)これを整理すると、x6−y6=(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)x^6 - y^6 = (x + y)(x - y)(x^2 - xy + y^2)(x^2 + xy + y^2)x6−y6=(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)x6−y6=(x2−y2)(x4+x2y2+y4)x^6 - y^6 = (x^2 - y^2)(x^4+x^2y^2+y^4)x6−y6=(x2−y2)(x4+x2y2+y4)と変形することも可能です。x4+2x2y2+y4−x2y2=(x2+y2)2−x2y2=(x2+y2+xy)(x2+y2−xy)x^4+2x^2y^2+y^4 -x^2y^2 = (x^2+y^2)^2 -x^2y^2 = (x^2+y^2+xy)(x^2+y^2-xy)x4+2x2y2+y4−x2y2=(x2+y2)2−x2y2=(x2+y2+xy)(x2+y2−xy)よって、x6−y6=(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)x^6 - y^6 = (x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)x6−y6=(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)と変形できます。3. 最終的な答えx6−y6=(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)x^6 - y^6 = (x + y)(x - y)(x^2 - xy + y^2)(x^2 + xy + y^2)x6−y6=(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)またはx6−y6=(x2−y2)(x4+x2y2+y4)x^6 - y^6 = (x^2 - y^2)(x^4+x^2y^2+y^4)x6−y6=(x2−y2)(x4+x2y2+y4)x6−y6=(x2−y2)(x2+y2+xy)(x2+y2−xy)x^6 - y^6 = (x^2 - y^2)(x^2+y^2+xy)(x^2+y^2-xy)x6−y6=(x2−y2)(x2+y2+xy)(x2+y2−xy)x6−y6=(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)x^6 - y^6 = (x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)x6−y6=(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)どちらでも正解です。