3つのサイコロを同時に投げたとき、出た目の合計が6になる確率を求めます。

確率論・統計学確率サイコロ組み合わせ期待値
2025/3/18

1. 問題の内容

3つのサイコロを同時に投げたとき、出た目の合計が6になる確率を求めます。

2. 解き方の手順

まず、3つのサイコロの目の合計が6になるような組み合わせをすべて列挙します。各サイコロの目を (a, b, c) と表すと、以下のようになります。
(1, 1, 4)
(1, 4, 1)
(4, 1, 1)
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)
(2, 2, 2)
これらの組み合わせは全部で10通りあります。
次に、3つのサイコロの目の出方の総数を計算します。各サイコロは1から6の目が出るので、目の出方の総数は 6×6×6=2166 \times 6 \times 6 = 216 通りです。
したがって、目の合計が6になる確率は、組み合わせの数を出方の総数で割ったものになります。
確率は、
10216=5108 \frac{10}{216} = \frac{5}{108}

3. 最終的な答え

求める確率は 5108\frac{5}{108} です。

「確率論・統計学」の関連問題

$X_1, X_2, ..., X_n$ がそれぞれ独立に正規分布 $N(\mu, \sigma^2)$ に従う確率変数であるとき、標本平均 $Y = \frac{X_1 + X_2 + ... + ...

確率変数正規分布標本平均期待値分散統計的推測
2025/7/15

確率変数 $X$ の期待値を $E[X]$、分散を $V[X]$ とする。$X_1, X_2, ..., X_n$ をそれぞれ独立に $X$ と同じ分布に従う確率変数とする。 標本平均 $Y = \f...

確率変数期待値分散標本平均確率収束
2025/7/15

問題は、確率変数 $X$ と、それから独立に生成される確率変数 $X_1, X_2, \dots, X_n$ を用いて、標本平均 $Y = \frac{X_1 + X_2 + \dots + X_n}...

確率変数標本平均期待値期待値の線形性
2025/7/15

ある家庭の玄関に取り付けられる電球の寿命(単位:日)は正規分布 $N(180, 10^2)$ に従う。正月に新しい電球に取り替えたとき、年内に2回以上取り替えなければならない確率を求める。ここで、1つ...

正規分布確率確率変数統計
2025/7/15

赤い玉1個(1000円)、緑の玉2個(300円)、青い玉3個(100円)、白い玉4個(0円)が入った福引がある。玉が出る確率はすべて等しいとする。この福引を引いたときに貰えるお金を確率変数Xとする。X...

確率変数期待値分散確率分布
2025/7/15

表が出る確率が1/3、裏が出る確率が2/3であるコインを10枚投げます。表が出れば1点、裏が出れば-1点を得ます。10枚のコインを同時に投げて得られる点数の和を確率変数 $X$ とするとき、$X$ の...

期待値分散確率変数線形性
2025/7/15

A大学の学生の所持金額は平均10000円、標準偏差4000円の正規分布に従い、B大学の学生の所持金額は平均8000円、標準偏差3000円の正規分布に従うとする。A大学とB大学からそれぞれ1人の学生を無...

確率変数期待値正規分布統計
2025/7/15

$x_i - 160$ の平均値が15.7、分散が6.25ということである。 つまり、 $\frac{1}{n}\sum_{i=1}^{n}(x_i-160) = 15.7$ ...

統計平均値分散標準偏差データの変換
2025/7/15

A班15人のテストの平均点が70点、分散が10であり、B班10人のテストの平均点が80点、分散が15である。このとき、25人全員のテストの平均点と分散を求める。

平均分散統計データの分析
2025/7/15

2つの変量 $x$ と $y$ のデータが与えられています。$x$ と $y$ の最頻値をそれぞれ仮平均として、相関係数 $r_{xy}$ を求める問題です。 データは以下の通りです。 | $x$ |...

統計相関係数データ解析最頻値
2025/7/15